[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# Switch Transformers
![Switch Transformer](st.png)
Implementation of Switch Transformers from the paper: "Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity" in PyTorch, Einops, and Zeta. [PAPER LINK](https://arxiv.org/abs/2101.03961)
## Installation
```bash
pip install switch-transformers
```
# Usage
```python
import torch
from switch_transformers import SwitchTransformer
# Generate a random tensor of shape (1, 10) with values between 0 and 100
x = torch.randint(0, 100, (1, 10))
# Create an instance of the SwitchTransformer model
# num_tokens: the number of tokens in the input sequence
# dim: the dimensionality of the model
# heads: the number of attention heads
# dim_head: the dimensionality of each attention head
model = SwitchTransformer(
num_tokens=100, dim=512, heads=8, dim_head=64
)
# Pass the input tensor through the model
out = model(x)
# Print the shape of the output tensor
print(out.shape)
```
## Citation
```bibtex
@misc{fedus2022switch,
title={Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity},
author={William Fedus and Barret Zoph and Noam Shazeer},
year={2022},
eprint={2101.03961},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/SwitchTransformers",
"name": "switch-transformers",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/93/54/9467b85567de5db2a86f0e2884361a8bc5acf6763873354c2b5398c55847/switch_transformers-0.0.4.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Switch Transformers\n\n![Switch Transformer](st.png)\n\nImplementation of Switch Transformers from the paper: \"Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity\" in PyTorch, Einops, and Zeta. [PAPER LINK](https://arxiv.org/abs/2101.03961)\n\n## Installation\n\n```bash\npip install switch-transformers\n```\n\n# Usage\n```python\nimport torch\nfrom switch_transformers import SwitchTransformer\n\n# Generate a random tensor of shape (1, 10) with values between 0 and 100\nx = torch.randint(0, 100, (1, 10))\n\n# Create an instance of the SwitchTransformer model\n# num_tokens: the number of tokens in the input sequence\n# dim: the dimensionality of the model\n# heads: the number of attention heads\n# dim_head: the dimensionality of each attention head\nmodel = SwitchTransformer(\n num_tokens=100, dim=512, heads=8, dim_head=64\n)\n\n# Pass the input tensor through the model\nout = model(x)\n\n# Print the shape of the output tensor\nprint(out.shape)\n\n\n```\n\n\n\n## Citation\n```bibtex\n@misc{fedus2022switch,\n title={Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity}, \n author={William Fedus and Barret Zoph and Noam Shazeer},\n year={2022},\n eprint={2101.03961},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n\n```\n\n# License\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "SwitchTransformers - Pytorch",
"version": "0.0.4",
"project_urls": {
"Documentation": "https://github.com/kyegomez/SwitchTransformers",
"Homepage": "https://github.com/kyegomez/SwitchTransformers",
"Repository": "https://github.com/kyegomez/SwitchTransformers"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b8c6ea0db98bfc80cc07851dea77af3124a28e0cbede49375129362e8a5d714d",
"md5": "213580cb65ce06649b86f7c091c1e972",
"sha256": "e57f21e358197e6e8347fb59703104b7a1c42bf2ccded4d95475614e145f7d1b"
},
"downloads": -1,
"filename": "switch_transformers-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "213580cb65ce06649b86f7c091c1e972",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6,<4.0",
"size": 5556,
"upload_time": "2024-01-24T21:05:02",
"upload_time_iso_8601": "2024-01-24T21:05:02.498344Z",
"url": "https://files.pythonhosted.org/packages/b8/c6/ea0db98bfc80cc07851dea77af3124a28e0cbede49375129362e8a5d714d/switch_transformers-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "93549467b85567de5db2a86f0e2884361a8bc5acf6763873354c2b5398c55847",
"md5": "7f3ef0705da38cbc8dd24822f4ae6e94",
"sha256": "e80972012db0ac1f73d922b31f5d0a05af4402a0859ca6bf03279ecf64f536fc"
},
"downloads": -1,
"filename": "switch_transformers-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "7f3ef0705da38cbc8dd24822f4ae6e94",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6,<4.0",
"size": 5622,
"upload_time": "2024-01-24T21:05:04",
"upload_time_iso_8601": "2024-01-24T21:05:04.291463Z",
"url": "https://files.pythonhosted.org/packages/93/54/9467b85567de5db2a86f0e2884361a8bc5acf6763873354c2b5398c55847/switch_transformers-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-24 21:05:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "SwitchTransformers",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "switch-transformers"
}