swxg


Nameswxg JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryFast, region-agnostic stochastic weather generation
upload_time2025-08-22 15:46:47
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords swxg stochastic synthetic weather generator semiparametric copula precipitation temperature
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # `swxg`
`swxg` is a Python package for modern [stochastic weather generation](https://www.ipcc-data.org/guidelines/pages/weather_generators.html). It quickly generates arbitrarily-long sequences of monthly or daily weather variables that match spatial and temporal correlations of input observations by: 
  1. fitting observed precipitation individually to a (Gaussian mixture model) hidden Markov model; 
  2. fitting both observed precipitation and temperature with hydroclimatic copulae;
  3. sampling precipitation from its fit, disaggregating to finer resolution where necessary, and;
  4. conditionally sampling temperature from the sampled precipitation and its fit, disaggregating to finer resolution where necessary

## Dependencies
The required dependencies to use `swxg` are:
  * `Python >= 3.10`
  * `copulae >= 0.8`
  * `copulas >= 0.12`
  * `hmmlearn >= 0.3`
  * `matplotlib >= 3.10`
  * `numpy >= 2.2`
  * `pandas >= 2.3`
  * `scikit-learn >= 1.7`
  * `scipy >= 1.15`
  * `statsmodels >= 0.14`

## Installation
To install `swxg` from PyPI with `pip`:

    pip install swxg

Alternatively, you can install from this repository:

    git clone https://github.com/xthames/swxg.git
    cd swxg
    pip install .

## Important Links
  * [Official Source Code](https://github.com/xthames/swxg)
  * [Documentation](https://swxg.readthedocs.org)

If your work uses `swxg`, please cite: 
  * [JOSS PAPER IN PREP], specifically for software
  * [WRR PAPER IN PREP], if relevant to applied (first) use case


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "swxg",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "swxg, stochastic, synthetic, weather, generator, semiparametric, copula, precipitation, temperature",
    "author": null,
    "author_email": "Alexander Thames <alexander.b.thames@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/d8/ff/3e94e86ad489ed719ca3150df1573060b0c066955ffacaf82d2311a01cdc/swxg-0.1.0.tar.gz",
    "platform": null,
    "description": "# `swxg`\n`swxg` is a Python package for modern [stochastic weather generation](https://www.ipcc-data.org/guidelines/pages/weather_generators.html). It quickly generates arbitrarily-long sequences of monthly or daily weather variables that match spatial and temporal correlations of input observations by: \n  1. fitting observed precipitation individually to a (Gaussian mixture model) hidden Markov model; \n  2. fitting both observed precipitation and temperature with hydroclimatic copulae;\n  3. sampling precipitation from its fit, disaggregating to finer resolution where necessary, and;\n  4. conditionally sampling temperature from the sampled precipitation and its fit, disaggregating to finer resolution where necessary\n\n## Dependencies\nThe required dependencies to use `swxg` are:\n  * `Python >= 3.10`\n  * `copulae >= 0.8`\n  * `copulas >= 0.12`\n  * `hmmlearn >= 0.3`\n  * `matplotlib >= 3.10`\n  * `numpy >= 2.2`\n  * `pandas >= 2.3`\n  * `scikit-learn >= 1.7`\n  * `scipy >= 1.15`\n  * `statsmodels >= 0.14`\n\n## Installation\nTo install `swxg` from PyPI with `pip`:\n\n    pip install swxg\n\nAlternatively, you can install from this repository:\n\n    git clone https://github.com/xthames/swxg.git\n    cd swxg\n    pip install .\n\n## Important Links\n  * [Official Source Code](https://github.com/xthames/swxg)\n  * [Documentation](https://swxg.readthedocs.org)\n\nIf your work uses `swxg`, please cite: \n  * [JOSS PAPER IN PREP], specifically for software\n  * [WRR PAPER IN PREP], if relevant to applied (first) use case\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Fast, region-agnostic stochastic weather generation",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://swxg.readthedocs.io/",
        "Homepage": "https://github.com/xthames/swxg",
        "Repository": "https://github.com/xthames/swxg.git"
    },
    "split_keywords": [
        "swxg",
        " stochastic",
        " synthetic",
        " weather",
        " generator",
        " semiparametric",
        " copula",
        " precipitation",
        " temperature"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "426dd63b8143b3304ffc21ff6dc24c83f8119fd0cc34b13458d51dc0e38f5c30",
                "md5": "6f5ebb31952b17f83bf0cdfd3975a7bb",
                "sha256": "b4697ef76671ba613cd888f6bcd958011a23ffb53eeec1e3538e6921285e78b3"
            },
            "downloads": -1,
            "filename": "swxg-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6f5ebb31952b17f83bf0cdfd3975a7bb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 31378,
            "upload_time": "2025-08-22T15:46:46",
            "upload_time_iso_8601": "2025-08-22T15:46:46.485953Z",
            "url": "https://files.pythonhosted.org/packages/42/6d/d63b8143b3304ffc21ff6dc24c83f8119fd0cc34b13458d51dc0e38f5c30/swxg-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d8ff3e94e86ad489ed719ca3150df1573060b0c066955ffacaf82d2311a01cdc",
                "md5": "c73b5cd39bc934e04c5a6ab8698b8253",
                "sha256": "ea1bc9e59e6dcd6bf5cdb88f444215d6ff24296431fed3c1cbd205a410b64810"
            },
            "downloads": -1,
            "filename": "swxg-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "c73b5cd39bc934e04c5a6ab8698b8253",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 30576,
            "upload_time": "2025-08-22T15:46:47",
            "upload_time_iso_8601": "2025-08-22T15:46:47.512005Z",
            "url": "https://files.pythonhosted.org/packages/d8/ff/3e94e86ad489ed719ca3150df1573060b0c066955ffacaf82d2311a01cdc/swxg-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-22 15:46:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "xthames",
    "github_project": "swxg",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "swxg"
}
        
Elapsed time: 1.22490s