Name | symmetria JSON |
Version |
0.3.1
JSON |
| download |
home_page | None |
Summary | Symmetria provides an intuitive, thorough, and comprehensive framework for interacting with the symmetric group and its elements. |
upload_time | 2024-12-16 15:09:39 |
maintainer | Vasco Schiavo |
docs_url | None |
author | Vasco Schiavo |
requires_python | <3.13,>=3.9 |
license | None |
keywords |
math
mathematics
symmetry
permutation
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<a href="https://symmetria.readthedocs.io/en/latest/"><img src="./docs/source/_static/symmetria.png" width="200" align="right" /></a>
## **Welcome to symmetria**
Symmetria provides an intuitive, thorough, and comprehensive framework for interacting
with the symmetric group and its elements.
- 📦 - installable via pip
- 🐍 - compatible with Python **3.9**, **3.10**, **3.11** and **3.12**
- 👍 - intuitive **API**
- 🧮 - a lot of functionalities already implemented
- ✅ - 100% of test coverage
You can give a look at how to work with symmetria in the section [quickstart](#quickstart),
or you can directly visit the [docs](https://symmetria.readthedocs.io/en/latest/).
Pull requests are welcome. For major changes, please open an issue first
to discuss what you would like to change, and give a look to the
[contribution guidelines](https://github.com/VascoSch92/symmetria/blob/main/CONTRIBUTING.md).
---
- [Installation](#installation)
- [Quickstart](#quickstart)
- [Command Line Interface](#command-line-interface)
- [Overview](#overview)
---
## Installation
Symmetria can be comfortably installed from PyPI using the command
```text
$ pip install symmetria
```
or directly from the source GitHub code with
```text
$ pip install git+https://github.com/VascoSch92/symmetria@xxx
```
where `xxx` is the name of the branch or the tag you would like to install.
You can check that `symmetria` was successfully installed by typing the command
```text
$ symmetria --version
```
## Quickstart
Let's get started with symmetria. First and foremost, we can import the `Permutation`
class from `symmetria`. The Permutation class serves as the fundamental class for
working with elements of the symmetric group, representing permutations as
bijective maps. Otherwise, you can utilize the `Cycle` class and `CycleDecomposition`
class to work with cycle permutations and permutations represented as cycle
decompositions, respectively.
Let's start by defining a permutation and exploring how we can represent it in various formats.
```python
from symmetria import Permutation
permutation = Permutation(1, 3, 4, 5, 2, 6)
permutation # Permutation(1, 3, 4, 5, 2, 6)
str(permutation) # (1, 3, 4, 5, 2, 6)
permutation.cycle_notation() # (1)(2 3 4 5)(6)
permutation.one_line_notation() # 134526
```
Permutation objects are easy to manipulate. They implement nearly every standard functionality of basic Python objects.
As a rule of thumb, if something seems intuitively possible, you can probably do it.
```python
from symmetria import Permutation
idx = Permutation(1, 2, 3)
permutation = Permutation(1, 3, 2)
if permutation:
print(f"The permutation {permutation} is not the identity.")
if idx == Permutation(1, 2, 3):
print(f"The permutation {idx} is the identity permutation.")
if permutation != idx:
print(f"The permutations {permutation} and {idx} are different.")
# The permutation (1, 3, 2) is not the identity.
# The permutation (1, 2, 3) is the identity permutation.
# The permutations (1, 3, 2) and (1, 2, 3) are different.
```
Basic arithmetic operations are implemented.
```python
from symmetria import Permutation
permutation = Permutation(3, 1, 4, 2)
multiplication = permutation * permutation # Permutation(4, 3, 2, 1)
power = permutation ** 2 # Permutation(4, 3, 2, 1)
inverse = permutation ** -1 # Permutation(2, 4, 1, 3)
identity = permutation * inverse # Permutation(1, 2, 3, 4)
```
Actions on different objects are also implemented.
```python
from symmetria import Permutation
permutation = Permutation(3, 2, 4, 1)
permutation(3) # 4
permutation("abcd") # 'dbac'
permutation(["I", "love", "Python", "!"]) # ['!', 'love', 'I', 'Python']
```
Moreover, many methods are already implemented. If what you are looking for is not available,
let us know as soon as possible.
```python
from symmetria import Permutation
permutation = Permutation(3, 2, 4, 1)
permutation.order() # 3
permutation.support() # {1, 3, 4}
permutation.sgn() # 1
permutation.cycle_decomposition() # CycleDecomposition(Cycle(1, 3, 4), Cycle(2))
permutation.cycle_type() # (1, 3)
permutation.is_derangement() # False
permutation.is_regular() # False
permutation.inversions() # [(1, 2), (1, 4), (2, 4), (3, 4)]
permutation.ascents() # [2]
permutation.descents() # [1, 3]
```
If you can't decide what you want, just print everything
```python
from symmetria import Permutation
print(Permutation(3, 2, 4, 1).describe())
```
in a nice formatted table:
```text
+----------------------------------------------------------------------------+
| Permutation(3, 2, 4, 1) |
+----------------------------------------------------------------------------+
| order | 3 |
+--------------------------------------+-------------------------------------+
| degree | 4 |
+--------------------------------------+-------------------------------------+
| is derangement | False |
+--------------------------------------+-------------------------------------+
| inverse | (4, 2, 1, 3) |
+--------------------------------------+-------------------------------------+
| parity | +1 (even) |
+--------------------------------------+-------------------------------------+
| cycle notation | (1 3 4)(2) |
+--------------------------------------+-------------------------------------+
| cycle type | (1, 3) |
+--------------------------------------+-------------------------------------+
| inversions | [(1, 2), (1, 4), (2, 4), (3, 4)] |
+--------------------------------------+-------------------------------------+
| ascents | [2] |
+--------------------------------------+-------------------------------------+
| descents | [1, 3] |
+--------------------------------------+-------------------------------------+
| excedencees | [1, 3] |
+--------------------------------------+-------------------------------------+
| records | [1, 3] |
+--------------------------------------+-------------------------------------+
```
Click [here](https://symmetria.readthedocs.io/en/latest/pages/API_reference/elements/index.html) for an overview of
all the functionalities implemented in `symmetria`.
## Command Line Interface
Symmetria also provides a simple command line interface to find all what you need just with a line.
```text
$ symmetria 132
+------------------------------------------------------+
| Permutation(1, 3, 2) |
+------------------------------------------------------+
| order | 2 |
+---------------------------+--------------------------+
| degree | 3 |
+---------------------------+--------------------------+
| is derangement | False |
+---------------------------+--------------------------+
| inverse | (1, 3, 2) |
+---------------------------+--------------------------+
| parity | -1 (odd) |
+---------------------------+--------------------------+
| cycle notation | (1)(2 3) |
+---------------------------+--------------------------+
| cycle type | (1, 2) |
+---------------------------+--------------------------+
| inversions | [(2, 3)] |
+---------------------------+--------------------------+
| ascents | [1] |
+---------------------------+--------------------------+
| descents | [2] |
+---------------------------+--------------------------+
| excedencees | [2] |
+---------------------------+--------------------------+
| records | [1, 2] |
+---------------------------+--------------------------+
```
Check it out.
```text
$ symmetria --help
Symmetria, an intuitive framework for working with the symmetric group and its elements.
Usage: symmetria <ARGUMENT> [OPTIONS]
Options:
-h, --help Print help
-v, --version Print version
Argument (optional):
permutation A permutation you want to learn more about.
The permutation must be given in its one-line format, i.e.,
for the permutation Permutation(2, 3, 1), write 231.
```
## Overview
| **Statistics** | ![Static Badge](https://img.shields.io/badge/symmetria-blue?style=for-the-badge) |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Repository** | ![GitHub Repo stars](https://img.shields.io/github/stars/VascoSch92/symmetria) ![GitHub forks](https://img.shields.io/github/forks/VascoSch92/symmetria) ![GitHub watchers](https://img.shields.io/github/watchers/VascoSch92/symmetria) |
| **Size** | ![GitHub repo file or directory count](https://img.shields.io/github/directory-file-count/VascoSch92/symmetria) ![GitHub repo size](https://img.shields.io/github/repo-size/VascoSch92/symmetria) |
| **Issues** | ![GitHub Issues or Pull Requests](https://img.shields.io/github/issues/VascoSch92/symmetria?logo=GitHub&color=yellow) ![GitHub Issues or Pull Requests](https://img.shields.io/github/issues-closed/VascoSch92/symmetria?logo=GitHub&color=green) |
| **Pull Requests** | ![GitHub Issues or Pull Requests](https://img.shields.io/github/issues-pr/VascoSch92/symmetria?logo=GitHub&color=yellow) ![GitHub Issues or Pull Requests](https://img.shields.io/github/issues-pr-closed/VascoSch92/symmetria?logo=GitHub&color=green) |
| **Open Source** | [![MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://github.com/VascSch92/symmetria/blob/main/LICENSE) [![MIT](https://img.shields.io/badge/Contributing-😃-blue.svg)](https://github.com/VascSch92/symmetria/blob/main/CONTRIBUTING.md) [![MIT](https://img.shields.io/badge/Code_of_conduct-⚖️-blue.svg)](https://github.com/VascSch92/symmetria/blob/main/CODE_OF_CONDUCT.md) |
| **DOCS** | ![Read the Docs](https://img.shields.io/readthedocs/symmetria?logo=readthedocs) |
| **CI/CD** | ![tests](https://github.com/VascoSch92/symmetria/actions/workflows/tests.yml/badge.svg) ![tests](https://github.com/VascoSch92/symmetria/actions/workflows/code-style.yml/badge.svg) ![tests](https://github.com/VascoSch92/symmetria/actions/workflows/release.yml/badge.svg) |
| **Code** | [![!pypi](https://img.shields.io/pypi/v/symmetria?color=orange)](https://pypi.org/project/symmetria/) [![!python-versions](https://img.shields.io/pypi/pyversions/symmetria)](https://www.python.org/) [![!black](https://img.shields.io/badge/code%20style-ruff-8A2BE2.svg)](https://github.com/astral-sh/ruff) |
| **Downloads** | [![Downloads](https://static.pepy.tech/personalized-badge/symmetria?period=week&units=international_system&left_color=grey&right_color=blue&left_text=weekly%20(pypi))](https://pepy.tech/project/symmetria) [![Downloads](https://static.pepy.tech/personalized-badge/symmetria?period=month&units=international_system&left_color=grey&right_color=blue&left_text=monthly%20(pypi))](https://pepy.tech/project/symmetria) [![Downloads](https://static.pepy.tech/personalized-badge/symmetria?period=total&units=international_system&left_color=grey&right_color=blue&left_text=cumulative%20(pypi))](https://pepy.tech/project/symmetria) |
Raw data
{
"_id": null,
"home_page": null,
"name": "symmetria",
"maintainer": "Vasco Schiavo",
"docs_url": null,
"requires_python": "<3.13,>=3.9",
"maintainer_email": null,
"keywords": "math, mathematics, symmetry, permutation",
"author": "Vasco Schiavo",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/3c/e3/156b2e9f24e189d9590562d1aef3212cfc33ae8b4d29ff1384f58ed7edce/symmetria-0.3.1.tar.gz",
"platform": null,
"description": "<a href=\"https://symmetria.readthedocs.io/en/latest/\"><img src=\"./docs/source/_static/symmetria.png\" width=\"200\" align=\"right\" /></a>\n\n## **Welcome to symmetria**\n\nSymmetria provides an intuitive, thorough, and comprehensive framework for interacting\nwith the symmetric group and its elements.\n\n- \ud83d\udce6 - installable via pip\n- \ud83d\udc0d - compatible with Python **3.9**, **3.10**, **3.11** and **3.12**\n- \ud83d\udc4d - intuitive **API**\n- \ud83e\uddee - a lot of functionalities already implemented\n- \u2705 - 100% of test coverage\n\nYou can give a look at how to work with symmetria in the section [quickstart](#quickstart),\nor you can directly visit the [docs](https://symmetria.readthedocs.io/en/latest/).\n\nPull requests are welcome. For major changes, please open an issue first\nto discuss what you would like to change, and give a look to the\n[contribution guidelines](https://github.com/VascoSch92/symmetria/blob/main/CONTRIBUTING.md).\n\n---\n\n- [Installation](#installation)\n- [Quickstart](#quickstart)\n- [Command Line Interface](#command-line-interface)\n- [Overview](#overview)\n\n---\n## Installation\n\nSymmetria can be comfortably installed from PyPI using the command\n\n```text\n$ pip install symmetria\n```\n\nor directly from the source GitHub code with\n\n```text\n$ pip install git+https://github.com/VascoSch92/symmetria@xxx\n```\n\nwhere `xxx` is the name of the branch or the tag you would like to install.\n\nYou can check that `symmetria` was successfully installed by typing the command\n\n```text\n$ symmetria --version\n```\n\n## Quickstart\n\nLet's get started with symmetria. First and foremost, we can import the `Permutation`\nclass from `symmetria`. The Permutation class serves as the fundamental class for\nworking with elements of the symmetric group, representing permutations as\nbijective maps. Otherwise, you can utilize the `Cycle` class and `CycleDecomposition`\nclass to work with cycle permutations and permutations represented as cycle\ndecompositions, respectively.\n\nLet's start by defining a permutation and exploring how we can represent it in various formats.\n\n```python\nfrom symmetria import Permutation\n\npermutation = Permutation(1, 3, 4, 5, 2, 6)\n\npermutation # Permutation(1, 3, 4, 5, 2, 6)\nstr(permutation) # (1, 3, 4, 5, 2, 6)\npermutation.cycle_notation() # (1)(2 3 4 5)(6)\npermutation.one_line_notation() # 134526\n```\n\nPermutation objects are easy to manipulate. They implement nearly every standard functionality of basic Python objects. \nAs a rule of thumb, if something seems intuitively possible, you can probably do it.\n\n```python\nfrom symmetria import Permutation\n\nidx = Permutation(1, 2, 3)\npermutation = Permutation(1, 3, 2)\n\nif permutation:\n print(f\"The permutation {permutation} is not the identity.\")\nif idx == Permutation(1, 2, 3):\n print(f\"The permutation {idx} is the identity permutation.\")\nif permutation != idx:\n print(f\"The permutations {permutation} and {idx} are different.\")\n\n# The permutation (1, 3, 2) is not the identity.\n# The permutation (1, 2, 3) is the identity permutation.\n# The permutations (1, 3, 2) and (1, 2, 3) are different.\n```\n\nBasic arithmetic operations are implemented.\n\n```python\nfrom symmetria import Permutation\n\npermutation = Permutation(3, 1, 4, 2)\n\nmultiplication = permutation * permutation # Permutation(4, 3, 2, 1)\npower = permutation ** 2 # Permutation(4, 3, 2, 1)\ninverse = permutation ** -1 # Permutation(2, 4, 1, 3)\nidentity = permutation * inverse # Permutation(1, 2, 3, 4)\n```\n\nActions on different objects are also implemented.\n\n```python\nfrom symmetria import Permutation\n\npermutation = Permutation(3, 2, 4, 1)\n\npermutation(3) # 4\npermutation(\"abcd\") # 'dbac'\npermutation([\"I\", \"love\", \"Python\", \"!\"]) # ['!', 'love', 'I', 'Python']\n```\n\nMoreover, many methods are already implemented. If what you are looking for is not available, \nlet us know as soon as possible.\n\n```python\nfrom symmetria import Permutation\n\npermutation = Permutation(3, 2, 4, 1)\n\npermutation.order() # 3\npermutation.support() # {1, 3, 4}\npermutation.sgn() # 1\npermutation.cycle_decomposition() # CycleDecomposition(Cycle(1, 3, 4), Cycle(2))\npermutation.cycle_type() # (1, 3)\npermutation.is_derangement() # False\npermutation.is_regular() # False\npermutation.inversions() # [(1, 2), (1, 4), (2, 4), (3, 4)]\npermutation.ascents() # [2]\npermutation.descents() # [1, 3]\n```\n\nIf you can't decide what you want, just print everything\n\n```python\nfrom symmetria import Permutation\n\nprint(Permutation(3, 2, 4, 1).describe())\n```\n\nin a nice formatted table:\n\n```text\n+----------------------------------------------------------------------------+\n| Permutation(3, 2, 4, 1) |\n+----------------------------------------------------------------------------+\n| order | 3 |\n+--------------------------------------+-------------------------------------+\n| degree | 4 |\n+--------------------------------------+-------------------------------------+\n| is derangement | False |\n+--------------------------------------+-------------------------------------+\n| inverse | (4, 2, 1, 3) |\n+--------------------------------------+-------------------------------------+\n| parity | +1 (even) |\n+--------------------------------------+-------------------------------------+\n| cycle notation | (1 3 4)(2) |\n+--------------------------------------+-------------------------------------+\n| cycle type | (1, 3) |\n+--------------------------------------+-------------------------------------+\n| inversions | [(1, 2), (1, 4), (2, 4), (3, 4)] |\n+--------------------------------------+-------------------------------------+\n| ascents | [2] |\n+--------------------------------------+-------------------------------------+\n| descents | [1, 3] |\n+--------------------------------------+-------------------------------------+\n| excedencees | [1, 3] |\n+--------------------------------------+-------------------------------------+\n| records | [1, 3] |\n+--------------------------------------+-------------------------------------+\n```\n\nClick [here](https://symmetria.readthedocs.io/en/latest/pages/API_reference/elements/index.html) for an overview of \nall the functionalities implemented in `symmetria`.\n\n\n## Command Line Interface\nSymmetria also provides a simple command line interface to find all what you need just with a line.\n\n```text\n$ symmetria 132\n+------------------------------------------------------+\n| Permutation(1, 3, 2) |\n+------------------------------------------------------+\n| order | 2 |\n+---------------------------+--------------------------+\n| degree | 3 |\n+---------------------------+--------------------------+\n| is derangement | False |\n+---------------------------+--------------------------+\n| inverse | (1, 3, 2) |\n+---------------------------+--------------------------+\n| parity | -1 (odd) |\n+---------------------------+--------------------------+\n| cycle notation | (1)(2 3) |\n+---------------------------+--------------------------+\n| cycle type | (1, 2) |\n+---------------------------+--------------------------+\n| inversions | [(2, 3)] |\n+---------------------------+--------------------------+\n| ascents | [1] |\n+---------------------------+--------------------------+\n| descents | [2] |\n+---------------------------+--------------------------+\n| excedencees | [2] |\n+---------------------------+--------------------------+\n| records | [1, 2] |\n+---------------------------+--------------------------+\n```\n\nCheck it out.\n\n```text\n$ symmetria --help\nSymmetria, an intuitive framework for working with the symmetric group and its elements.\n\n\nUsage: symmetria <ARGUMENT> [OPTIONS] \n\nOptions: \n -h, --help Print help \n -v, --version Print version \n\nArgument (optional): \n permutation A permutation you want to learn more about. \n The permutation must be given in its one-line format, i.e., \n for the permutation Permutation(2, 3, 1), write 231. \n```\n\n\n## Overview\n\n| **Statistics** | ![Static Badge](https://img.shields.io/badge/symmetria-blue?style=for-the-badge) |\n|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| **Repository** | ![GitHub Repo stars](https://img.shields.io/github/stars/VascoSch92/symmetria) ![GitHub forks](https://img.shields.io/github/forks/VascoSch92/symmetria) ![GitHub watchers](https://img.shields.io/github/watchers/VascoSch92/symmetria) |\n| **Size** | ![GitHub repo file or directory count](https://img.shields.io/github/directory-file-count/VascoSch92/symmetria) ![GitHub repo size](https://img.shields.io/github/repo-size/VascoSch92/symmetria) |\n| **Issues** | ![GitHub Issues or Pull Requests](https://img.shields.io/github/issues/VascoSch92/symmetria?logo=GitHub&color=yellow) ![GitHub Issues or Pull Requests](https://img.shields.io/github/issues-closed/VascoSch92/symmetria?logo=GitHub&color=green) |\n| **Pull Requests** | ![GitHub Issues or Pull Requests](https://img.shields.io/github/issues-pr/VascoSch92/symmetria?logo=GitHub&color=yellow) ![GitHub Issues or Pull Requests](https://img.shields.io/github/issues-pr-closed/VascoSch92/symmetria?logo=GitHub&color=green) | \n| **Open Source** | [![MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://github.com/VascSch92/symmetria/blob/main/LICENSE) [![MIT](https://img.shields.io/badge/Contributing-\ud83d\ude03-blue.svg)](https://github.com/VascSch92/symmetria/blob/main/CONTRIBUTING.md) [![MIT](https://img.shields.io/badge/Code_of_conduct-\u2696\ufe0f-blue.svg)](https://github.com/VascSch92/symmetria/blob/main/CODE_OF_CONDUCT.md) |\n| **DOCS** | ![Read the Docs](https://img.shields.io/readthedocs/symmetria?logo=readthedocs) | \n| **CI/CD** | ![tests](https://github.com/VascoSch92/symmetria/actions/workflows/tests.yml/badge.svg) ![tests](https://github.com/VascoSch92/symmetria/actions/workflows/code-style.yml/badge.svg) ![tests](https://github.com/VascoSch92/symmetria/actions/workflows/release.yml/badge.svg) |\n| **Code** | [![!pypi](https://img.shields.io/pypi/v/symmetria?color=orange)](https://pypi.org/project/symmetria/) [![!python-versions](https://img.shields.io/pypi/pyversions/symmetria)](https://www.python.org/) [![!black](https://img.shields.io/badge/code%20style-ruff-8A2BE2.svg)](https://github.com/astral-sh/ruff) |\n| **Downloads** | [![Downloads](https://static.pepy.tech/personalized-badge/symmetria?period=week&units=international_system&left_color=grey&right_color=blue&left_text=weekly%20(pypi))](https://pepy.tech/project/symmetria) [![Downloads](https://static.pepy.tech/personalized-badge/symmetria?period=month&units=international_system&left_color=grey&right_color=blue&left_text=monthly%20(pypi))](https://pepy.tech/project/symmetria) [![Downloads](https://static.pepy.tech/personalized-badge/symmetria?period=total&units=international_system&left_color=grey&right_color=blue&left_text=cumulative%20(pypi))](https://pepy.tech/project/symmetria) |\n",
"bugtrack_url": null,
"license": null,
"summary": "Symmetria provides an intuitive, thorough, and comprehensive framework for interacting with the symmetric group and its elements.",
"version": "0.3.1",
"project_urls": {
"Documentation": "https://symmetria.readthedocs.io/en/latest/",
"Homepage": "https://github.com/VascoSch92/symmetria",
"Repository": "https://github.com/VascoSch92/symmetria"
},
"split_keywords": [
"math",
" mathematics",
" symmetry",
" permutation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "bea5f29f693e608ba08455d285a1ed1e514d44e781e6e244247c800055883a06",
"md5": "06309eb7736ba5e2ece24c28adfcba8e",
"sha256": "eaf9a6707fc69c952b686e4fba7968490868e9b3ce0810e527ed0912d7de3d59"
},
"downloads": -1,
"filename": "symmetria-0.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "06309eb7736ba5e2ece24c28adfcba8e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13,>=3.9",
"size": 36554,
"upload_time": "2024-12-16T15:09:36",
"upload_time_iso_8601": "2024-12-16T15:09:36.311217Z",
"url": "https://files.pythonhosted.org/packages/be/a5/f29f693e608ba08455d285a1ed1e514d44e781e6e244247c800055883a06/symmetria-0.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3ce3156b2e9f24e189d9590562d1aef3212cfc33ae8b4d29ff1384f58ed7edce",
"md5": "65a4680e41c8ea91b99321223257d574",
"sha256": "74d4692c98a16e5d02cb84a0ea2a2f256992ff05868e285009cd427ae1451c8a"
},
"downloads": -1,
"filename": "symmetria-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "65a4680e41c8ea91b99321223257d574",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13,>=3.9",
"size": 35041,
"upload_time": "2024-12-16T15:09:39",
"upload_time_iso_8601": "2024-12-16T15:09:39.500482Z",
"url": "https://files.pythonhosted.org/packages/3c/e3/156b2e9f24e189d9590562d1aef3212cfc33ae8b4d29ff1384f58ed7edce/symmetria-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-16 15:09:39",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "VascoSch92",
"github_project": "symmetria",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "symmetria"
}