# SymphonyFamiliarity
A component that displays how familiar certain data points are within a dataset.
This is useful for finding outliers and common instances.
The familiarity metric is based on a column prefixed `familiarity_`, which must contain a number that indicates the familiarity value.
## Installation
```bash
pip install symphony_familiarity
```
## Usage
To learn how to use Symphony, see the [documentation](https://apple.github.io/ml-symphony/).
## Development
To learn about how to build Symphony from source and how to contribute to the framework, please look at [CONTRIBUTING.md](../CONTRIBUTING.md) and the [development documentation](https://apple.github.io/ml-symphony/contributing.html).
Raw data
{
"_id": null,
"home_page": "https://github.com/apple/ml-symphony",
"name": "symphony-familiarity",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "Jupyter,Widgets,IPython",
"author": "Apple",
"author_email": "dnikit-symphony-oss@group.apple.com",
"download_url": "https://files.pythonhosted.org/packages/0d/00/aa1d7d6b4bbe5a0da9512060738c7d366298e3b6a490512d4b4d536d7281/symphony_familiarity-1.0.2.tar.gz",
"platform": "Linux",
"description": "# SymphonyFamiliarity\n\nA component that displays how familiar certain data points are within a dataset.\nThis is useful for finding outliers and common instances.\nThe familiarity metric is based on a column prefixed `familiarity_`, which must contain a number that indicates the familiarity value.\n\n## Installation\n\n```bash\npip install symphony_familiarity\n```\n\n## Usage\n\nTo learn how to use Symphony, see the [documentation](https://apple.github.io/ml-symphony/).\n\n## Development\n\nTo learn about how to build Symphony from source and how to contribute to the framework, please look at [CONTRIBUTING.md](../CONTRIBUTING.md) and the [development documentation](https://apple.github.io/ml-symphony/contributing.html).\n",
"bugtrack_url": null,
"license": "Apple Sample Code License",
"summary": "A Symphony component to find outliers and common instances in a dataset",
"version": "1.0.2",
"project_urls": {
"Homepage": "https://github.com/apple/ml-symphony"
},
"split_keywords": [
"jupyter",
"widgets",
"ipython"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9c5fb0431b615175b9a5d63a193e2421a266902b67700e01ae6b145c68ffc430",
"md5": "b045e14c9ab3334855085ad40b8afcba",
"sha256": "62fb9ccadbbb780f304afafc302033d95ea3b583bc99bef9796cc09e807c13f5"
},
"downloads": -1,
"filename": "symphony_familiarity-1.0.2-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "b045e14c9ab3334855085ad40b8afcba",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.6",
"size": 11499047,
"upload_time": "2023-08-08T22:03:09",
"upload_time_iso_8601": "2023-08-08T22:03:09.821761Z",
"url": "https://files.pythonhosted.org/packages/9c/5f/b0431b615175b9a5d63a193e2421a266902b67700e01ae6b145c68ffc430/symphony_familiarity-1.0.2-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0d00aa1d7d6b4bbe5a0da9512060738c7d366298e3b6a490512d4b4d536d7281",
"md5": "2d7eb2f1aed8483e645383a47a8420bf",
"sha256": "fea94b8ceec3b14b33f6cb81952490f7a97f5477401ec266d1ccd5d07bf369d6"
},
"downloads": -1,
"filename": "symphony_familiarity-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "2d7eb2f1aed8483e645383a47a8420bf",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 6627551,
"upload_time": "2023-08-08T22:03:13",
"upload_time_iso_8601": "2023-08-08T22:03:13.715317Z",
"url": "https://files.pythonhosted.org/packages/0d/00/aa1d7d6b4bbe5a0da9512060738c7d366298e3b6a490512d4b4d536d7281/symphony_familiarity-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-08-08 22:03:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "apple",
"github_project": "ml-symphony",
"github_not_found": true,
"lcname": "symphony-familiarity"
}