syndat


Namesyndat JSON
Version 0.10.2 PyPI version JSON
download
home_pagehttps://github.com/SCAI-BIO/syndat
SummaryA library for evaluation & visualization of synthetic data.
upload_time2024-11-11 14:28:58
maintainerNone
docs_urlNone
authorTim Adams
requires_python>=3.9
licenseMIT
keywords synthetic-data data-quality data-visualization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Syndat
![tests](https://github.com/SCAI-BIO/syndat/actions/workflows/tests.yaml/badge.svg) ![docs](https://readthedocs.org/projects/syndat/badge/?version=latest&style=flat) ![version](https://img.shields.io/github/v/release/SCAI-BIO/syndat)

Syndat is a software package that provides basic functionalities for the evaluation and visualizsation of synthetic data. Quality scores can be computed on 3 base metrics (Discrimation, Correlation and Distribution) and data may be visualized to inspect correlation structures or statistical distribution plots.

# Installation

Install via pip:

```bash
pip install syndat
```

# Usage

## Quality metrics

Compute data quality metrics by comparing real and synthetic data in terms of their separation complexity, 
distribution similarity or pairwise feature correlations:

```python
import pandas as pd
import syndat

real = pd.read_csv("real.csv")
synthetic = pd.read_csv("synthetic.csv")

# How similar are the statistical distributions of real and synthetic features 
distribution_similarity_score = syndat.scores.distribution(real, synthetic)

# How hard is it for a classifier to discriminate real and synthetic data
discrimination_score = syndat.scores.discrimination(real, synthetic)

# How well are pairwise feature correlations preserved
correlation_score = syndat.scores.correlation(real, synthetic)
```

Scores are defined in a range of 0-100, with a higher score corresponding to better data fidelity.

## Visualization

Visualize real vs. synthetic data distributions, summary statistics and discriminating features:

```python
import pandas as pd
import syndat

real = pd.read_csv("real.csv")
synthetic = pd.read_csv("synthetic.csv")

# plot *all* feature distribution and store image files
syndat.visualization.plot_distributions(real, synthetic, store_destination="results/plots")
syndat.visualization.plot_correlations(real, synthetic, store_destination="results/plots")

# plot and display specific feature distribution plot
syndat.visualization.plot_numerical_feature("feature_xy", real, synthetic)
syndat.visualization.plot_numerical_feature("feature_xy", real, synthetic)

# plot a shap plot of differentiating feature for real and synthetic data
syndat.visualization.plot_shap_discrimination(real, synthetic)
```


## Postprocessing

Postprocess synthetic data to improve data fidelity:

```python
import pandas as pd
import syndat

real = pd.read_csv("real.csv")
synthetic = pd.read_csv("synthetic.csv")

# postprocess synthetic data
synthetic_post = syndat.postprocessing.assert_minmax(real, synthetic)
synthetic_post = syndat.postprocessing.normalize_float_precision(real, synthetic)
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/SCAI-BIO/syndat",
    "name": "syndat",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "synthetic-data, data-quality, data-visualization",
    "author": "Tim Adams",
    "author_email": "tim.adams@scai.fraunhofer.de",
    "download_url": "https://files.pythonhosted.org/packages/f1/bb/0eb243ff9774f27794b27faf7d4dbfd92578234e579b4839cd157cb25fc5/syndat-0.10.2.tar.gz",
    "platform": null,
    "description": "\n# Syndat\n![tests](https://github.com/SCAI-BIO/syndat/actions/workflows/tests.yaml/badge.svg) ![docs](https://readthedocs.org/projects/syndat/badge/?version=latest&style=flat) ![version](https://img.shields.io/github/v/release/SCAI-BIO/syndat)\n\nSyndat is a software package that provides basic functionalities for the evaluation and visualizsation of synthetic data. Quality scores can be computed on 3 base metrics (Discrimation, Correlation and Distribution) and data may be visualized to inspect correlation structures or statistical distribution plots.\n\n# Installation\n\nInstall via pip:\n\n```bash\npip install syndat\n```\n\n# Usage\n\n## Quality metrics\n\nCompute data quality metrics by comparing real and synthetic data in terms of their separation complexity, \ndistribution similarity or pairwise feature correlations:\n\n```python\nimport pandas as pd\nimport syndat\n\nreal = pd.read_csv(\"real.csv\")\nsynthetic = pd.read_csv(\"synthetic.csv\")\n\n# How similar are the statistical distributions of real and synthetic features \ndistribution_similarity_score = syndat.scores.distribution(real, synthetic)\n\n# How hard is it for a classifier to discriminate real and synthetic data\ndiscrimination_score = syndat.scores.discrimination(real, synthetic)\n\n# How well are pairwise feature correlations preserved\ncorrelation_score = syndat.scores.correlation(real, synthetic)\n```\n\nScores are defined in a range of 0-100, with a higher score corresponding to better data fidelity.\n\n## Visualization\n\nVisualize real vs. synthetic data distributions, summary statistics and discriminating features:\n\n```python\nimport pandas as pd\nimport syndat\n\nreal = pd.read_csv(\"real.csv\")\nsynthetic = pd.read_csv(\"synthetic.csv\")\n\n# plot *all* feature distribution and store image files\nsyndat.visualization.plot_distributions(real, synthetic, store_destination=\"results/plots\")\nsyndat.visualization.plot_correlations(real, synthetic, store_destination=\"results/plots\")\n\n# plot and display specific feature distribution plot\nsyndat.visualization.plot_numerical_feature(\"feature_xy\", real, synthetic)\nsyndat.visualization.plot_numerical_feature(\"feature_xy\", real, synthetic)\n\n# plot a shap plot of differentiating feature for real and synthetic data\nsyndat.visualization.plot_shap_discrimination(real, synthetic)\n```\n\n\n## Postprocessing\n\nPostprocess synthetic data to improve data fidelity:\n\n```python\nimport pandas as pd\nimport syndat\n\nreal = pd.read_csv(\"real.csv\")\nsynthetic = pd.read_csv(\"synthetic.csv\")\n\n# postprocess synthetic data\nsynthetic_post = syndat.postprocessing.assert_minmax(real, synthetic)\nsynthetic_post = syndat.postprocessing.normalize_float_precision(real, synthetic)\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A library for evaluation & visualization of synthetic data.",
    "version": "0.10.2",
    "project_urls": {
        "Documentation": "https://github.com/SCAI-BIO/syndat#readme",
        "Homepage": "https://github.com/SCAI-BIO/syndat",
        "Source": "https://github.com/SCAI-BIO/syndat",
        "Tracker": "https://github.com/SCAI-BIO/syndat/issues"
    },
    "split_keywords": [
        "synthetic-data",
        " data-quality",
        " data-visualization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c8c3682a8b4c1abd78c3b16f7a1199bf10ba64395b15f255c878313408298e64",
                "md5": "e7c9a1dfecceaeefcfa5f50a6722a93b",
                "sha256": "7941e23678454df05f8f76440e0e8310ab2b24a64a0fc3b952c25619e684701f"
            },
            "downloads": -1,
            "filename": "syndat-0.10.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e7c9a1dfecceaeefcfa5f50a6722a93b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 11944,
            "upload_time": "2024-11-11T14:28:57",
            "upload_time_iso_8601": "2024-11-11T14:28:57.286370Z",
            "url": "https://files.pythonhosted.org/packages/c8/c3/682a8b4c1abd78c3b16f7a1199bf10ba64395b15f255c878313408298e64/syndat-0.10.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f1bb0eb243ff9774f27794b27faf7d4dbfd92578234e579b4839cd157cb25fc5",
                "md5": "073f72c99907a5a28ecbff889d01578e",
                "sha256": "77dd867196ba9fc118d542843fd7016144ad9000c648f1e7d2f03968f23e2dc2"
            },
            "downloads": -1,
            "filename": "syndat-0.10.2.tar.gz",
            "has_sig": false,
            "md5_digest": "073f72c99907a5a28ecbff889d01578e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 14050,
            "upload_time": "2024-11-11T14:28:58",
            "upload_time_iso_8601": "2024-11-11T14:28:58.744134Z",
            "url": "https://files.pythonhosted.org/packages/f1/bb/0eb243ff9774f27794b27faf7d4dbfd92578234e579b4839cd157cb25fc5/syndat-0.10.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-11 14:28:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "SCAI-BIO",
    "github_project": "syndat",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "syndat"
}
        
Elapsed time: 0.39661s