Name | syntheseus-retro-star-benchmark JSON |
Version |
0.1.0
JSON |
| download |
home_page | |
Summary | Syntheseus wrapper for retro* benchmark. |
upload_time | 2024-03-10 17:11:24 |
maintainer | |
docs_url | None |
author | Austin Tripp |
requires_python | >=3.7 |
license | MIT License Copyright (c) 2024 Austin Tripp (and implicitly by Binghong Chen, Chengtao Li, Hanjun Dai, Le Song via inclusion of some of their code) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Syntheseus retro star benchmark
A wrapper for using the benchmark from retro*
([Chen et al 2020](http://proceedings.mlr.press/v119/chen20k.html))
in [syntheseus](https://github.com/microsoft/syntheseus/).
Usage:
```python
from syntheseus_retro_star_benchmark import RetroStarReactionModel
model = RetroStarReactionModel() # a syntheseus BackwardReactionModel object wrapping the pre-trained template classifier
from syntheseus_retro_star_benchmark import RetroStarInventory
inventory = RetroStarInventory() # their inventory of ~23M purchasable molecules
from syntheseus_retro_star_benchmark import get_190_hard_test_smiles
test_smiles = get_190_hard_test_smiles() # their recommended 190 test SMILES
from syntheseus_retro_star_benchmark import RetroStarValueMLP
value_fn = RetroStarValueMLP() # their pre-trained search heuristic
```
Code was based on open source code from [here](https://github.com/binghong-ml/retro_star/tree/master/retro_star/packages/mlp_retrosyn/mlp_retrosyn).
Some data was uploaded to
[figshare](https://figshare.com/articles/dataset/Syntheseus_retro_star_benchmark_data/25376728)
to ensure stable, consistent access.
## Installation
Install either by cloning and using pip or running
`pip install syntheseus-retro-star-benchmark`.
## Development
Ensure to install all pre-commit hooks and run unit tests (provided by pytest).
Raw data
{
"_id": null,
"home_page": "",
"name": "syntheseus-retro-star-benchmark",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Austin Tripp",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/b0/ae/b5542840e8b389a56ab2fecd69291ceed14ab54b03d51d877653f6dfa221/syntheseus-retro-star-benchmark-0.1.0.tar.gz",
"platform": null,
"description": "# Syntheseus retro star benchmark\n\nA wrapper for using the benchmark from retro*\n([Chen et al 2020](http://proceedings.mlr.press/v119/chen20k.html))\nin [syntheseus](https://github.com/microsoft/syntheseus/).\n\nUsage:\n\n```python\nfrom syntheseus_retro_star_benchmark import RetroStarReactionModel\nmodel = RetroStarReactionModel() # a syntheseus BackwardReactionModel object wrapping the pre-trained template classifier\n\nfrom syntheseus_retro_star_benchmark import RetroStarInventory\ninventory = RetroStarInventory() # their inventory of ~23M purchasable molecules\n\nfrom syntheseus_retro_star_benchmark import get_190_hard_test_smiles\ntest_smiles = get_190_hard_test_smiles() # their recommended 190 test SMILES\n\nfrom syntheseus_retro_star_benchmark import RetroStarValueMLP\nvalue_fn = RetroStarValueMLP() # their pre-trained search heuristic\n```\n\nCode was based on open source code from [here](https://github.com/binghong-ml/retro_star/tree/master/retro_star/packages/mlp_retrosyn/mlp_retrosyn).\nSome data was uploaded to\n[figshare](https://figshare.com/articles/dataset/Syntheseus_retro_star_benchmark_data/25376728)\nto ensure stable, consistent access.\n\n## Installation\n\nInstall either by cloning and using pip or running\n`pip install syntheseus-retro-star-benchmark`.\n\n## Development\n\nEnsure to install all pre-commit hooks and run unit tests (provided by pytest).\n",
"bugtrack_url": null,
"license": "MIT License Copyright (c) 2024 Austin Tripp (and implicitly by Binghong Chen, Chengtao Li, Hanjun Dai, Le Song via inclusion of some of their code) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ",
"summary": "Syntheseus wrapper for retro* benchmark.",
"version": "0.1.0",
"project_urls": {
"Repository": "https://github.com/AustinT/syntheseus-retro-star-benchmark"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a4076f3fb235ad221f6773ca9da1942ee530c76fe7dc94ea5c774f1b1ba99b68",
"md5": "56798bf515f03eee74199ca13521b665",
"sha256": "df3ee794c09967013c6cd6158aca374ab144b85bb619bb156b96eb546403203b"
},
"downloads": -1,
"filename": "syntheseus_retro_star_benchmark-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "56798bf515f03eee74199ca13521b665",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 14583,
"upload_time": "2024-03-10T17:11:23",
"upload_time_iso_8601": "2024-03-10T17:11:23.339814Z",
"url": "https://files.pythonhosted.org/packages/a4/07/6f3fb235ad221f6773ca9da1942ee530c76fe7dc94ea5c774f1b1ba99b68/syntheseus_retro_star_benchmark-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b0aeb5542840e8b389a56ab2fecd69291ceed14ab54b03d51d877653f6dfa221",
"md5": "7804d47d64160c124a55c41701ed02bc",
"sha256": "2c59608a2438801e716f2548cf3b5ffae311b4d4d7a14534f0fe0216671e1a4d"
},
"downloads": -1,
"filename": "syntheseus-retro-star-benchmark-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "7804d47d64160c124a55c41701ed02bc",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 16016,
"upload_time": "2024-03-10T17:11:24",
"upload_time_iso_8601": "2024-03-10T17:11:24.933627Z",
"url": "https://files.pythonhosted.org/packages/b0/ae/b5542840e8b389a56ab2fecd69291ceed14ab54b03d51d877653f6dfa221/syntheseus-retro-star-benchmark-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-10 17:11:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "AustinT",
"github_project": "syntheseus-retro-star-benchmark",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "syntheseus-retro-star-benchmark"
}