tablecv


Nametablecv JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/inquilabee/TableCV
SummaryTable extraction from image.
upload_time2023-09-14 21:40:48
maintainer
docs_urlNone
authorVishal Kumar Mishra
requires_python>=3.10,<4.0
licenseMIT
keywords opencv opencv python python table image python table extraction
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TableCV

**TableCV** is a Python package designed to extract tables from images. It offers two approaches for extracting tables, allowing you to choose the one that best suits your needs.

## Installation

You can easily install **TableCV** using pip:

```bash
pip install tablecv
```

## Usage

### Approach 1 (using PaddleOCR)

**TableCV** offers a straightforward method to extract tables using PaddleOCR. This approach returns a pandas DataFrame object:

```python
from tablecv import extract_table

# Replace "image_path" with the path to your image
print(extract_table(image_path="your_image.png"))
```

### Approach 2 (OCR with Your Preferred Tool)

If you prefer using a different OCR tool like EasyOCR, KerasOCR, or any other OCR solution, you can still use **TableCV**. First, perform OCR on your image using your chosen tool. The OCR results should be structured as a list of tuples, each containing a bounding box and corresponding text:

```python
# List of tuples: (bounding box as (x, y, w, h), text)
ocr_results = [
    ((1, 2, 3, 4), "a"),
    ((4, 5, 6, 7), "b"),
    # Add more tuples as needed
]
```

After obtaining your OCR results, you can extract tables from them using **TableCV**:

```python
from tablecv import extract_table_from_ocr

# Replace "ocr_results" with your OCR results list
print(extract_table_from_ocr(ocr_results))
```

With these two approaches, **TableCV** provides flexibility for table extraction from images, whether you prefer using PaddleOCR or another OCR tool of your choice.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/inquilabee/TableCV",
    "name": "tablecv",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10,<4.0",
    "maintainer_email": "",
    "keywords": "opencv,opencv python,python table image,python table extraction",
    "author": "Vishal Kumar Mishra",
    "author_email": "vishal.k.mishra2@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d8/bd/9e2ed14c189d1a91288704e226e22788503318d137b4781e9c5ffaeeb8e7/tablecv-0.1.1.tar.gz",
    "platform": null,
    "description": "# TableCV\n\n**TableCV** is a Python package designed to extract tables from images. It offers two approaches for extracting tables, allowing you to choose the one that best suits your needs.\n\n## Installation\n\nYou can easily install **TableCV** using pip:\n\n```bash\npip install tablecv\n```\n\n## Usage\n\n### Approach 1 (using PaddleOCR)\n\n**TableCV** offers a straightforward method to extract tables using PaddleOCR. This approach returns a pandas DataFrame object:\n\n```python\nfrom tablecv import extract_table\n\n# Replace \"image_path\" with the path to your image\nprint(extract_table(image_path=\"your_image.png\"))\n```\n\n### Approach 2 (OCR with Your Preferred Tool)\n\nIf you prefer using a different OCR tool like EasyOCR, KerasOCR, or any other OCR solution, you can still use **TableCV**. First, perform OCR on your image using your chosen tool. The OCR results should be structured as a list of tuples, each containing a bounding box and corresponding text:\n\n```python\n# List of tuples: (bounding box as (x, y, w, h), text)\nocr_results = [\n    ((1, 2, 3, 4), \"a\"),\n    ((4, 5, 6, 7), \"b\"),\n    # Add more tuples as needed\n]\n```\n\nAfter obtaining your OCR results, you can extract tables from them using **TableCV**:\n\n```python\nfrom tablecv import extract_table_from_ocr\n\n# Replace \"ocr_results\" with your OCR results list\nprint(extract_table_from_ocr(ocr_results))\n```\n\nWith these two approaches, **TableCV** provides flexibility for table extraction from images, whether you prefer using PaddleOCR or another OCR tool of your choice.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Table extraction from image.",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/inquilabee/TableCV",
        "Repository": "https://github.com/inquilabee/TableCV"
    },
    "split_keywords": [
        "opencv",
        "opencv python",
        "python table image",
        "python table extraction"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9571c923ed0a731e3ea009c9fb69b23243bc9617844e710b75d06ad46f50d84c",
                "md5": "55c3b20d1ec65be1005a0081fd2e56dc",
                "sha256": "9603fcb9ef7a23704ce1b087c9b73a00ed0856e3b8eadfa3b1001a12febc652b"
            },
            "downloads": -1,
            "filename": "tablecv-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "55c3b20d1ec65be1005a0081fd2e56dc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10,<4.0",
            "size": 7959,
            "upload_time": "2023-09-14T21:40:46",
            "upload_time_iso_8601": "2023-09-14T21:40:46.948068Z",
            "url": "https://files.pythonhosted.org/packages/95/71/c923ed0a731e3ea009c9fb69b23243bc9617844e710b75d06ad46f50d84c/tablecv-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d8bd9e2ed14c189d1a91288704e226e22788503318d137b4781e9c5ffaeeb8e7",
                "md5": "66833d29a2e69d8890d0a9e118fc4245",
                "sha256": "d74e8e47c75b612f6fa29c12a85f37d55c6cccabd062f3a308042ffb422fe91e"
            },
            "downloads": -1,
            "filename": "tablecv-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "66833d29a2e69d8890d0a9e118fc4245",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10,<4.0",
            "size": 6614,
            "upload_time": "2023-09-14T21:40:48",
            "upload_time_iso_8601": "2023-09-14T21:40:48.494496Z",
            "url": "https://files.pythonhosted.org/packages/d8/bd/9e2ed14c189d1a91288704e226e22788503318d137b4781e9c5ffaeeb8e7/tablecv-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-14 21:40:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "inquilabee",
    "github_project": "TableCV",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "tablecv"
}
        
Elapsed time: 0.27510s