tabular-ml


Nametabular-ml JSON
Version 0.0.2 PyPI version JSON
download
home_page
SummaryThis library wraps popular tabular regression/classification model enabling rapid evaluation and optimization.
upload_time2023-06-05 19:33:38
maintainer
docs_urlNone
author
requires_python>=3.11
license
keywords machine-learning pipeline factory tabular regression classification
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Pre-Commit Status](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/pre-commit.yml/badge.svg)](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/pre-commit.yml)
[![Tests Status](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/tests.yml/badge.svg)](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/tests.yml)
[![Coverage](https://codecov.io/gh/xaviernogueira/Tabular_ML/graph/badge.svg)](https://codecov.io/gh/xaviernogueira/Tabular_ML)

# `tabular_ml` - tabular machine learning simplified!
I've packaged and open sourced my personal machine learning tools to speed up your next data science project.

Train, evaluate, ensemble, and optimize hyperparameters from a standardized interface.

![repo_schematic](images/readme_image.png)

## Key Features
* Train models efficiently without worrying about library differences! `tabular_ml` implements library specific, performance oriented, patterns/classes under-the-hood (i.e., `xgboost.DMatrix -> xgboost.Booster`).
* Automate the K-Fold evaluation process across multiple models simultaneously (including ensembles).
* Rapidly optimize hyperparameters using [`optuna`](https://optuna.org/). Leverage our built-in parameter search spaces, or adjust to your needs.
* Plugin-able. Write your own plugins to extend functionality without forking (and consider contributing your plugins!).

**For full documentation see our GitHub ReadMe [here](https://github.com/xaviernogueira/Tabular_ML).**

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "tabular-ml",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "",
    "keywords": "machine-learning,pipeline,factory,tabular,regression,classification",
    "author": "",
    "author_email": "Xavier Nogueira <xavier.rojas.nogueira@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/e0/4c/66cce8bd97d0484b1482f6d0be4abc905ab0c063dfc20894829e3f0eae6e/tabular_ml-0.0.2.tar.gz",
    "platform": null,
    "description": "[![Pre-Commit Status](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/pre-commit.yml/badge.svg)](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/pre-commit.yml)\n[![Tests Status](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/tests.yml/badge.svg)](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/tests.yml)\n[![Coverage](https://codecov.io/gh/xaviernogueira/Tabular_ML/graph/badge.svg)](https://codecov.io/gh/xaviernogueira/Tabular_ML)\n\n# `tabular_ml` - tabular machine learning simplified!\nI've packaged and open sourced my personal machine learning tools to speed up your next data science project.\n\nTrain, evaluate, ensemble, and optimize hyperparameters from a standardized interface.\n\n![repo_schematic](images/readme_image.png)\n\n## Key Features\n* Train models efficiently without worrying about library differences! `tabular_ml` implements library specific, performance oriented, patterns/classes under-the-hood (i.e., `xgboost.DMatrix -> xgboost.Booster`).\n* Automate the K-Fold evaluation process across multiple models simultaneously (including ensembles).\n* Rapidly optimize hyperparameters using [`optuna`](https://optuna.org/). Leverage our built-in parameter search spaces, or adjust to your needs.\n* Plugin-able. Write your own plugins to extend functionality without forking (and consider contributing your plugins!).\n\n**For full documentation see our GitHub ReadMe [here](https://github.com/xaviernogueira/Tabular_ML).**\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "This library wraps popular tabular regression/classification model enabling rapid evaluation and optimization.",
    "version": "0.0.2",
    "project_urls": null,
    "split_keywords": [
        "machine-learning",
        "pipeline",
        "factory",
        "tabular",
        "regression",
        "classification"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6659a5a368486f0f02b6225edd5b855e3f389f876f2164924e35f2c26e5e14b1",
                "md5": "86c0e5ec557474d888a704fce0de6941",
                "sha256": "b6fcc4ff2bdd2201ad62eeb8a02898c04a45da16be90c54ca990542d062066bc"
            },
            "downloads": -1,
            "filename": "tabular_ml-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "86c0e5ec557474d888a704fce0de6941",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 17759,
            "upload_time": "2023-06-05T19:33:36",
            "upload_time_iso_8601": "2023-06-05T19:33:36.244602Z",
            "url": "https://files.pythonhosted.org/packages/66/59/a5a368486f0f02b6225edd5b855e3f389f876f2164924e35f2c26e5e14b1/tabular_ml-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e04c66cce8bd97d0484b1482f6d0be4abc905ab0c063dfc20894829e3f0eae6e",
                "md5": "165a8436f62d65a501e36c7e7148cbed",
                "sha256": "585d0eb2fd94bc1cb6c577f612acbf06dc60f0f0a4e1302edae460ed7becf8eb"
            },
            "downloads": -1,
            "filename": "tabular_ml-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "165a8436f62d65a501e36c7e7148cbed",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 158150,
            "upload_time": "2023-06-05T19:33:38",
            "upload_time_iso_8601": "2023-06-05T19:33:38.090884Z",
            "url": "https://files.pythonhosted.org/packages/e0/4c/66cce8bd97d0484b1482f6d0be4abc905ab0c063dfc20894829e3f0eae6e/tabular_ml-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-05 19:33:38",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "tabular-ml"
}
        
Elapsed time: 0.33796s