[![Pre-Commit Status](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/pre-commit.yml/badge.svg)](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/pre-commit.yml)
[![Tests Status](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/tests.yml/badge.svg)](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/tests.yml)
[![Coverage](https://codecov.io/gh/xaviernogueira/Tabular_ML/graph/badge.svg)](https://codecov.io/gh/xaviernogueira/Tabular_ML)
# `tabular_ml` - tabular machine learning simplified!
I've packaged and open sourced my personal machine learning tools to speed up your next data science project.
Train, evaluate, ensemble, and optimize hyperparameters from a standardized interface.
![repo_schematic](images/readme_image.png)
## Key Features
* Train models efficiently without worrying about library differences! `tabular_ml` implements library specific, performance oriented, patterns/classes under-the-hood (i.e., `xgboost.DMatrix -> xgboost.Booster`).
* Automate the K-Fold evaluation process across multiple models simultaneously (including ensembles).
* Rapidly optimize hyperparameters using [`optuna`](https://optuna.org/). Leverage our built-in parameter search spaces, or adjust to your needs.
* Plugin-able. Write your own plugins to extend functionality without forking (and consider contributing your plugins!).
**For full documentation see our GitHub ReadMe [here](https://github.com/xaviernogueira/Tabular_ML).**
Raw data
{
"_id": null,
"home_page": "",
"name": "tabular-ml",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "",
"keywords": "machine-learning,pipeline,factory,tabular,regression,classification",
"author": "",
"author_email": "Xavier Nogueira <xavier.rojas.nogueira@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/e0/4c/66cce8bd97d0484b1482f6d0be4abc905ab0c063dfc20894829e3f0eae6e/tabular_ml-0.0.2.tar.gz",
"platform": null,
"description": "[![Pre-Commit Status](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/pre-commit.yml/badge.svg)](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/pre-commit.yml)\n[![Tests Status](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/tests.yml/badge.svg)](https://github.com/xaviernogueira/Tabular_ML/actions/workflows/tests.yml)\n[![Coverage](https://codecov.io/gh/xaviernogueira/Tabular_ML/graph/badge.svg)](https://codecov.io/gh/xaviernogueira/Tabular_ML)\n\n# `tabular_ml` - tabular machine learning simplified!\nI've packaged and open sourced my personal machine learning tools to speed up your next data science project.\n\nTrain, evaluate, ensemble, and optimize hyperparameters from a standardized interface.\n\n![repo_schematic](images/readme_image.png)\n\n## Key Features\n* Train models efficiently without worrying about library differences! `tabular_ml` implements library specific, performance oriented, patterns/classes under-the-hood (i.e., `xgboost.DMatrix -> xgboost.Booster`).\n* Automate the K-Fold evaluation process across multiple models simultaneously (including ensembles).\n* Rapidly optimize hyperparameters using [`optuna`](https://optuna.org/). Leverage our built-in parameter search spaces, or adjust to your needs.\n* Plugin-able. Write your own plugins to extend functionality without forking (and consider contributing your plugins!).\n\n**For full documentation see our GitHub ReadMe [here](https://github.com/xaviernogueira/Tabular_ML).**\n",
"bugtrack_url": null,
"license": "",
"summary": "This library wraps popular tabular regression/classification model enabling rapid evaluation and optimization.",
"version": "0.0.2",
"project_urls": null,
"split_keywords": [
"machine-learning",
"pipeline",
"factory",
"tabular",
"regression",
"classification"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6659a5a368486f0f02b6225edd5b855e3f389f876f2164924e35f2c26e5e14b1",
"md5": "86c0e5ec557474d888a704fce0de6941",
"sha256": "b6fcc4ff2bdd2201ad62eeb8a02898c04a45da16be90c54ca990542d062066bc"
},
"downloads": -1,
"filename": "tabular_ml-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "86c0e5ec557474d888a704fce0de6941",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 17759,
"upload_time": "2023-06-05T19:33:36",
"upload_time_iso_8601": "2023-06-05T19:33:36.244602Z",
"url": "https://files.pythonhosted.org/packages/66/59/a5a368486f0f02b6225edd5b855e3f389f876f2164924e35f2c26e5e14b1/tabular_ml-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e04c66cce8bd97d0484b1482f6d0be4abc905ab0c063dfc20894829e3f0eae6e",
"md5": "165a8436f62d65a501e36c7e7148cbed",
"sha256": "585d0eb2fd94bc1cb6c577f612acbf06dc60f0f0a4e1302edae460ed7becf8eb"
},
"downloads": -1,
"filename": "tabular_ml-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "165a8436f62d65a501e36c7e7148cbed",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 158150,
"upload_time": "2023-06-05T19:33:38",
"upload_time_iso_8601": "2023-06-05T19:33:38.090884Z",
"url": "https://files.pythonhosted.org/packages/e0/4c/66cce8bd97d0484b1482f6d0be4abc905ab0c063dfc20894829e3f0eae6e/tabular_ml-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-05 19:33:38",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "tabular-ml"
}