[![PyPI version](https://badge.fury.io/py/tadasets.svg)](https://badge.fury.io/py/tadasets)
![PyPI - Downloads](https://img.shields.io/pypi/dm/tadasets)
[![Codecov](https://codecov.io/gh/scikit-tda/tadasets/branch/master/graph/badge.svg)](https://codecov.io/gh/scikit-tda/tadasets)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
This package provides some nice utilities for creating and loading data sets
that are useful for Topological Data Analysis. Currently, we provide various
synthetic data sets with particular topological features.
# Setup
Installation is as easy as
```
pip install tadasets
```
# Usage
The shape constructors are exposed in a functional interface, each returning a numpy array containing data sampled on the object. Available objects include
- torus
- d-sphere
- swiss roll
- infinity sign
- eyeglasses
Each shape can be embedded in arbitrary ambient dimension by supplying the `ambient` argument. Additionally, noise can be added to the shape through the `noise` argument.
```python
import tadasets
torus = tadasets.torus(n=2000, c=2, a=1, ambient=200, noise=0.2)
swiss_roll = tadasets.swiss_roll(n=2000, r=4, ambient=10, noise=1.2)
dsphere = tadasets.dsphere(n=1000, d=12, r=3.14, ambient=14, noise=0.14)
infty_sign = tadasets.infty_sign(n=3000, noise=0.1)
eyeglasses = tadasets.eyeglasses(n=1000, r1=1, r2=2, neck_size=.5, noise=0.1, ambient=10)
```
## Contributions
We welcome contributions of all shapes and sizes. There are lots of opportunities for potential projects, so please get in touch if you would like to help out. Everything from an implementation of your favorite distance, notebooks, examples, and documentation are all equally valuable so please don’t feel you can’t contribute.
If you have ideas for new shapes or features, please do suggest them in an issue and submit a pull request!
To contribute please fork the project make your changes and submit a pull request. We will do our best to work through any issues with you and get your code merged into the main branch.
Raw data
{
"_id": null,
"home_page": "",
"name": "tadasets",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "Nathaniel Saul <nat@riverasaul.com>, Chris Tralie <chris.tralie@gmail.com>, Michael Catanzaro <catanzaromj@pm.me>",
"keywords": "topological data analysis,data sets,test data,algebraic topology",
"author": "",
"author_email": "Nathaniel Saul <nat@riverasaul.com>, Chris Tralie <chris.tralie@gmail.com>, Filip Cornell <c.filip.cornell@gmail.com>, Michael Catanzaro <catanzaromj@pm.me>",
"download_url": "https://files.pythonhosted.org/packages/7d/30/a5574a4d7e26f2c98701e24af1653ab3cd203c49a861c04ecdd976aa7a55/tadasets-0.2.1.tar.gz",
"platform": null,
"description": "[![PyPI version](https://badge.fury.io/py/tadasets.svg)](https://badge.fury.io/py/tadasets)\n![PyPI - Downloads](https://img.shields.io/pypi/dm/tadasets)\n[![Codecov](https://codecov.io/gh/scikit-tda/tadasets/branch/master/graph/badge.svg)](https://codecov.io/gh/scikit-tda/tadasets)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n\nThis package provides some nice utilities for creating and loading data sets\nthat are useful for Topological Data Analysis. Currently, we provide various\nsynthetic data sets with particular topological features.\n\n# Setup\n\nInstallation is as easy as\n\n```\npip install tadasets\n```\n\n# Usage\n\nThe shape constructors are exposed in a functional interface, each returning a numpy array containing data sampled on the object. Available objects include\n\n- torus\n- d-sphere\n- swiss roll\n- infinity sign\n- eyeglasses\n\nEach shape can be embedded in arbitrary ambient dimension by supplying the `ambient` argument. Additionally, noise can be added to the shape through the `noise` argument.\n\n```python\nimport tadasets\n\ntorus = tadasets.torus(n=2000, c=2, a=1, ambient=200, noise=0.2)\nswiss_roll = tadasets.swiss_roll(n=2000, r=4, ambient=10, noise=1.2)\ndsphere = tadasets.dsphere(n=1000, d=12, r=3.14, ambient=14, noise=0.14)\ninfty_sign = tadasets.infty_sign(n=3000, noise=0.1)\neyeglasses = tadasets.eyeglasses(n=1000, r1=1, r2=2, neck_size=.5, noise=0.1, ambient=10)\n```\n\n## Contributions\n\nWe welcome contributions of all shapes and sizes. There are lots of opportunities for potential projects, so please get in touch if you would like to help out. Everything from an implementation of your favorite distance, notebooks, examples, and documentation are all equally valuable so please don\u2019t feel you can\u2019t contribute.\n\nIf you have ideas for new shapes or features, please do suggest them in an issue and submit a pull request!\n\nTo contribute please fork the project make your changes and submit a pull request. We will do our best to work through any issues with you and get your code merged into the main branch.\n",
"bugtrack_url": null,
"license": "",
"summary": "Great data sets for Topological Data Analysis.",
"version": "0.2.1",
"project_urls": {
"Changelog": "https://github.com/scikit-tda/persim/blob/master/RELEASE.txt",
"Documentation": "https://tadasets.scikit-tda.org",
"Homepage": "https://tadasets.scikit-tda.org",
"Issues": "https://github.com/scikit-tda/tadasets/issues",
"Repository": "https://github.com/scikit-tda/tadasets"
},
"split_keywords": [
"topological data analysis",
"data sets",
"test data",
"algebraic topology"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3c6d8bd97b4cee55305830b5c5d0121ff7a879597db755152b2d05ce4d7e92ff",
"md5": "6a12f98abe971519a6ae5895083f6db7",
"sha256": "dbe1685e3bfda86f44e8fcbd2663984f947c2a5bcd9c00f24abb383e8eb78f2d"
},
"downloads": -1,
"filename": "tadasets-0.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6a12f98abe971519a6ae5895083f6db7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 9230,
"upload_time": "2024-03-17T13:01:44",
"upload_time_iso_8601": "2024-03-17T13:01:44.450077Z",
"url": "https://files.pythonhosted.org/packages/3c/6d/8bd97b4cee55305830b5c5d0121ff7a879597db755152b2d05ce4d7e92ff/tadasets-0.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7d30a5574a4d7e26f2c98701e24af1653ab3cd203c49a861c04ecdd976aa7a55",
"md5": "42edf910bee7402d3aaf5e0e356fe34f",
"sha256": "3d66eaf9d090f26191f359689410d202bc63913762b356692d8d0ca997d9eba2"
},
"downloads": -1,
"filename": "tadasets-0.2.1.tar.gz",
"has_sig": false,
"md5_digest": "42edf910bee7402d3aaf5e0e356fe34f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 10868,
"upload_time": "2024-03-17T13:01:47",
"upload_time_iso_8601": "2024-03-17T13:01:47.486455Z",
"url": "https://files.pythonhosted.org/packages/7d/30/a5574a4d7e26f2c98701e24af1653ab3cd203c49a861c04ecdd976aa7a55/tadasets-0.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-17 13:01:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "scikit-tda",
"github_project": "persim",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"lcname": "tadasets"
}