tanml


Nametanml JSON
Version 0.1.7 PyPI version JSON
download
home_pageNone
SummaryAutomated validation toolkit for tabular ML models—MRM, credit risk, insurance, and other regulated use cases.
upload_time2025-10-06 17:48:46
maintainerTanmay Sah, Dolly Sah
docs_urlNone
authorTanmay Sah, Dolly Sah
requires_python>=3.8
licenseNone
keywords model validation model risk management model governance sr 11-7 tabular ml credit risk insurance analytics explainability xai shap stress testing reporting docx streamlit xgboost lightgbm catboost
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TanML: Automated Model Validation Toolkit for Tabular Machine Learning

[![Cite this repo](https://img.shields.io/badge/Cite-this_repo-blue)](https://github.com/tdlabs-ai/tanml#license--citation)
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
[![Downloads](https://pepy.tech/badge/tanml)](https://pepy.tech/project/tanml)

**TanML** validates tabular ML models with a zero-config **Streamlit UI** and exports an audit-ready, **editable Word report (.docx)**. It covers data quality, correlation/VIF, performance, explainability (SHAP), and robustness/stress tests—built for regulated settings (MRM, credit risk, insurance, etc.).

* **Status:** Beta (`0.x`)
* **License:** MIT
* **Python:** 3.8–3.12
* **OS:** Linux / macOS / Windows (incl. WSL)

---

## Why TanML?

* **Zero-config UI:** launch Streamlit, upload data, click **Run**—no YAML needed.
* **Audit-ready outputs:** tables/plots + a polished DOCX your stakeholders can edit.
* **Regulatory alignment:** supports common Model Risk Management themes (e.g., SR 11-7 style).
* **Works with your stack:** scikit-learn, XGBoost/LightGBM/CatBoost, etc.

---

## Install

```bash
pip install tanml
```

## Quick Start (UI)

```bash
tanml ui
```

* Opens at **[http://127.0.0.1:8501](http://127.0.0.1:8501)**
* **Upload limit ~1 GB** (preconfigured)
* **Telemetry disabled by default**

### In the app

1. **Load data** — upload a cleaned CSV/XLSX/Parquet (optional: raw or separate Train/Test).
2. **Select target & features** — target auto-suggested; features default to all non-target columns.
3. **Pick a model** — choose library/algorithm (scikit-learn, XGBoost, LightGBM, CatBoost) and tweak params.
4. **Run validation** — click **▶️ Refit & validate**.
5. **Export** — click **⬇️ Download report** to get a **DOCX** (auto-selects classification/regression template).

**Outputs**

* Report: `./.ui_runs/<session>/tanml_report_*.docx`
* Artifacts (CSV/PNGs): `./.ui_runs/<session>/artifacts/*`

---

## What TanML Checks

* **Raw Data (optional):** rows/cols, missingness, duplicates, constant columns
* **Data Quality & EDA:** summaries, distributions
* **Correlation & Multicollinearity:** heatmap, top-pairs CSV, **VIF** table
* **Performance**

  * **Classification:** AUC, PR-AUC, KS, decile lift, confusion
  * **Regression:** R², MAE, MSE/RMSE, error stats
* **Explainability:** SHAP (auto explainer; configurable background size)
* **Robustness/Stress Tests:** feature perturbations → delta-metrics
* **Model Metadata:** model class, hyperparameters, features, training info

---


## Templates

TanML ships DOCX templates (packaged in wheel & sdist):

* `tanml/report/templates/report_template_cls.docx`
* `tanml/report/templates/report_template_reg.docx`

---


## License & Citation

**License:** MIT. See [LICENSE](https://github.com/tdlabs-ai/tanml/blob/main/LICENSE).  
SPDX-License-Identifier: MIT

© 2025 Tanmay Sah and Dolly Sah. You may use, modify, and distribute this software with appropriate attribution.

### How to cite

If TanML helps your work or publications, please cite:

> Sah, T., & Sah, D. (2025). *TanML: Automated Model Validation Toolkit for Tabular Machine Learning* [Software]. Available at https://github.com/tdlabs-ai/tanml

Or in BibTeX (version-agnostic):

```bibtex
@misc{tanml,
  author = {Sah, Tanmay and Sah, Dolly},
  title  = {TanML: Automated Model Validation Toolkit for Tabular Machine Learning},
  year   = {2025},
  note   = {Software; MIT License},
  url    = {https://github.com/tdlabs-ai/tanml}
}
```

A machine-readable citation file (`CITATION.cff`) is included for citation tools and GitHub’s “Cite this repository” button.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "tanml",
    "maintainer": "Tanmay Sah, Dolly Sah",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "model validation, model risk management, model governance, SR 11-7, tabular ML, credit risk, insurance analytics, explainability, XAI, SHAP, stress testing, reporting, docx, streamlit, xgboost, lightgbm, catboost",
    "author": "Tanmay Sah, Dolly Sah",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/44/cc/585d7d0877077a34f7c6ad6dc4d259f5fc1f92962085f45943c25f123fe5/tanml-0.1.7.tar.gz",
    "platform": null,
    "description": "# TanML: Automated Model Validation Toolkit for Tabular Machine Learning\n\n[![Cite this repo](https://img.shields.io/badge/Cite-this_repo-blue)](https://github.com/tdlabs-ai/tanml#license--citation)\n[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)\n[![Downloads](https://pepy.tech/badge/tanml)](https://pepy.tech/project/tanml)\n\n**TanML** validates tabular ML models with a zero-config **Streamlit UI** and exports an audit-ready, **editable Word report (.docx)**. It covers data quality, correlation/VIF, performance, explainability (SHAP), and robustness/stress tests\u2014built for regulated settings (MRM, credit risk, insurance, etc.).\n\n* **Status:** Beta (`0.x`)\n* **License:** MIT\n* **Python:** 3.8\u20133.12\n* **OS:** Linux / macOS / Windows (incl. WSL)\n\n---\n\n## Why TanML?\n\n* **Zero-config UI:** launch Streamlit, upload data, click **Run**\u2014no YAML needed.\n* **Audit-ready outputs:** tables/plots + a polished DOCX your stakeholders can edit.\n* **Regulatory alignment:** supports common Model Risk Management themes (e.g., SR 11-7 style).\n* **Works with your stack:** scikit-learn, XGBoost/LightGBM/CatBoost, etc.\n\n---\n\n## Install\n\n```bash\npip install tanml\n```\n\n## Quick Start (UI)\n\n```bash\ntanml ui\n```\n\n* Opens at **[http://127.0.0.1:8501](http://127.0.0.1:8501)**\n* **Upload limit ~1 GB** (preconfigured)\n* **Telemetry disabled by default**\n\n### In the app\n\n1. **Load data** \u2014 upload a cleaned CSV/XLSX/Parquet (optional: raw or separate Train/Test).\n2. **Select target & features** \u2014 target auto-suggested; features default to all non-target columns.\n3. **Pick a model** \u2014 choose library/algorithm (scikit-learn, XGBoost, LightGBM, CatBoost) and tweak params.\n4. **Run validation** \u2014 click **\u25b6\ufe0f Refit & validate**.\n5. **Export** \u2014 click **\u2b07\ufe0f Download report** to get a **DOCX** (auto-selects classification/regression template).\n\n**Outputs**\n\n* Report: `./.ui_runs/<session>/tanml_report_*.docx`\n* Artifacts (CSV/PNGs): `./.ui_runs/<session>/artifacts/*`\n\n---\n\n## What TanML Checks\n\n* **Raw Data (optional):** rows/cols, missingness, duplicates, constant columns\n* **Data Quality & EDA:** summaries, distributions\n* **Correlation & Multicollinearity:** heatmap, top-pairs CSV, **VIF** table\n* **Performance**\n\n  * **Classification:** AUC, PR-AUC, KS, decile lift, confusion\n  * **Regression:** R\u00b2, MAE, MSE/RMSE, error stats\n* **Explainability:** SHAP (auto explainer; configurable background size)\n* **Robustness/Stress Tests:** feature perturbations \u2192 delta-metrics\n* **Model Metadata:** model class, hyperparameters, features, training info\n\n---\n\n\n## Templates\n\nTanML ships DOCX templates (packaged in wheel & sdist):\n\n* `tanml/report/templates/report_template_cls.docx`\n* `tanml/report/templates/report_template_reg.docx`\n\n---\n\n\n## License & Citation\n\n**License:** MIT. See [LICENSE](https://github.com/tdlabs-ai/tanml/blob/main/LICENSE).  \nSPDX-License-Identifier: MIT\n\n\u00a9 2025 Tanmay Sah and Dolly Sah. You may use, modify, and distribute this software with appropriate attribution.\n\n### How to cite\n\nIf TanML helps your work or publications, please cite:\n\n> Sah, T., & Sah, D. (2025). *TanML: Automated Model Validation Toolkit for Tabular Machine Learning* [Software]. Available at https://github.com/tdlabs-ai/tanml\n\nOr in BibTeX (version-agnostic):\n\n```bibtex\n@misc{tanml,\n  author = {Sah, Tanmay and Sah, Dolly},\n  title  = {TanML: Automated Model Validation Toolkit for Tabular Machine Learning},\n  year   = {2025},\n  note   = {Software; MIT License},\n  url    = {https://github.com/tdlabs-ai/tanml}\n}\n```\n\nA machine-readable citation file (`CITATION.cff`) is included for citation tools and GitHub\u2019s \u201cCite this repository\u201d button.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Automated validation toolkit for tabular ML models\u2014MRM, credit risk, insurance, and other regulated use cases.",
    "version": "0.1.7",
    "project_urls": {
        "Documentation": "https://github.com/tdlabs-ai/tanml#readme",
        "Homepage": "https://github.com/tdlabs-ai/tanml",
        "Issues": "https://github.com/tdlabs-ai/tanml/issues",
        "Source": "https://github.com/tdlabs-ai/tanml"
    },
    "split_keywords": [
        "model validation",
        " model risk management",
        " model governance",
        " sr 11-7",
        " tabular ml",
        " credit risk",
        " insurance analytics",
        " explainability",
        " xai",
        " shap",
        " stress testing",
        " reporting",
        " docx",
        " streamlit",
        " xgboost",
        " lightgbm",
        " catboost"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9193ac632e227b8e79389edd2b735598c9da59c95c4db9d1a97bb00d727bb4af",
                "md5": "58b57ea21f04922016c5a143b9a2f183",
                "sha256": "84fb266a9abb3d9671e3de28b3bebd42c2db5da02e496042446dc5c63f78bc77"
            },
            "downloads": -1,
            "filename": "tanml-0.1.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "58b57ea21f04922016c5a143b9a2f183",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 136699,
            "upload_time": "2025-10-06T17:48:45",
            "upload_time_iso_8601": "2025-10-06T17:48:45.815233Z",
            "url": "https://files.pythonhosted.org/packages/91/93/ac632e227b8e79389edd2b735598c9da59c95c4db9d1a97bb00d727bb4af/tanml-0.1.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "44cc585d7d0877077a34f7c6ad6dc4d259f5fc1f92962085f45943c25f123fe5",
                "md5": "00b0136ef992ecdfa57e86d3aaf34d11",
                "sha256": "a6b7f80c12690c03ebc6e265659250e728e32bf1c5164f8edf8d11624200cb9a"
            },
            "downloads": -1,
            "filename": "tanml-0.1.7.tar.gz",
            "has_sig": false,
            "md5_digest": "00b0136ef992ecdfa57e86d3aaf34d11",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 121514,
            "upload_time": "2025-10-06T17:48:46",
            "upload_time_iso_8601": "2025-10-06T17:48:46.981185Z",
            "url": "https://files.pythonhosted.org/packages/44/cc/585d7d0877077a34f7c6ad6dc4d259f5fc1f92962085f45943c25f123fe5/tanml-0.1.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-06 17:48:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tdlabs-ai",
    "github_project": "tanml#readme",
    "github_not_found": true,
    "lcname": "tanml"
}
        
Elapsed time: 2.42892s