tapqir


Nametapqir JSON
Version 1.1.19 PyPI version JSON
download
home_pagehttps://tapqir.readthedocs.io
SummaryBayesian analysis of co-localization single-molecule microscopy image data
upload_time2023-07-07 15:44:05
maintainer
docs_urlNone
authorYerdos Ordabayev
requires_python>=3.7
licenseApache 2.0
keywords image-classification probabilistic-programming cosmos pyro
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. image:: https://github.com/gelles-brandeis/tapqir/raw/latest/docs/source/_static/logo.png
   :target: https://tapqir.readthedocs.io/
   :alt: Tapqir logo

*Bayesian analysis of co-localization single-molecule microscopy image data.*

---------

.. |ci| image:: https://github.com/gelles-brandeis/tapqir/workflows/build/badge.svg
  :target: https://github.com/gelles-brandeis/tapqir/actions

.. |docs| image:: https://readthedocs.org/projects/tapqir/badge/?version=latest
    :alt: Documentation Status
    :scale: 100%
    :target: https://tapqir.readthedocs.io/

.. |pypi| image:: https://badge.fury.io/py/tapqir.svg
    :alt: PyPI version
    :target: https://pypi.org/project/tapqir/

.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
  :target: https://github.com/ambv/black

.. |DOI| image:: https://img.shields.io/badge/DOI-10.7554%2FeLife.73860-blue
   :target: https://doi.org/10.7554/eLife.73860
   :alt: DOI

|DOI| |ci| |docs| |pypi| |black|

`Publication <https://doi.org/10.7554/eLife.73860>`_ |
`Documentation & Tutorials <https://tapqir.readthedocs.io/>`_ |
`Discussions/Q&As <https://github.com/gelles-brandeis/tapqir/discussions/>`_

Publication
-----------

Tapqir and the *cosmos* model are described in Ordabayev et al., "Bayesian machine learning analysis of single-molecule fluorescence colocalization images" eLife 2022;11:e73860 `doi: 10.7554/eLife.73860 <https://doi.org/10.7554/eLife.73860>`_

Documentation & Tutorials
-------------------------

Please visit our `website <https://tapqir.readthedocs.io/>`_ for documentation, tutorials, and general information.

Announcements
-------------

To get notified about new releases sign in to Github, go to top right corner of this page and click on Watch -> Custom -> Releases.

Discussions/Q&As
----------------

Please post questions about the software on our `forum <https://github.com/gelles-brandeis/tapqir/discussions>`_. We will try to respond promptly.

Changelog
---------

To see the entire list of releases and changelogs go to `releases <https://github.com/gelles-brandeis/tapqir/releases>`_.



            

Raw data

            {
    "_id": null,
    "home_page": "https://tapqir.readthedocs.io",
    "name": "tapqir",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "image-classification probabilistic-programming cosmos pyro",
    "author": "Yerdos Ordabayev",
    "author_email": "ordabayev@brandeis.edu",
    "download_url": "https://files.pythonhosted.org/packages/e1/93/a68441097fb70861488f1b857b7ccfbdb613fd6815da7b67c8f4fb8f8680/tapqir-1.1.19.tar.gz",
    "platform": null,
    "description": ".. image:: https://github.com/gelles-brandeis/tapqir/raw/latest/docs/source/_static/logo.png\n   :target: https://tapqir.readthedocs.io/\n   :alt: Tapqir logo\n\n*Bayesian analysis of co-localization single-molecule microscopy image data.*\n\n---------\n\n.. |ci| image:: https://github.com/gelles-brandeis/tapqir/workflows/build/badge.svg\n  :target: https://github.com/gelles-brandeis/tapqir/actions\n\n.. |docs| image:: https://readthedocs.org/projects/tapqir/badge/?version=latest\n    :alt: Documentation Status\n    :scale: 100%\n    :target: https://tapqir.readthedocs.io/\n\n.. |pypi| image:: https://badge.fury.io/py/tapqir.svg\n    :alt: PyPI version\n    :target: https://pypi.org/project/tapqir/\n\n.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg\n  :target: https://github.com/ambv/black\n\n.. |DOI| image:: https://img.shields.io/badge/DOI-10.7554%2FeLife.73860-blue\n   :target: https://doi.org/10.7554/eLife.73860\n   :alt: DOI\n\n|DOI| |ci| |docs| |pypi| |black|\n\n`Publication <https://doi.org/10.7554/eLife.73860>`_ |\n`Documentation & Tutorials <https://tapqir.readthedocs.io/>`_ |\n`Discussions/Q&As <https://github.com/gelles-brandeis/tapqir/discussions/>`_\n\nPublication\n-----------\n\nTapqir and the *cosmos* model are described in Ordabayev et al., \"Bayesian machine learning analysis of single-molecule fluorescence colocalization images\" eLife 2022;11:e73860 `doi: 10.7554/eLife.73860 <https://doi.org/10.7554/eLife.73860>`_\n\nDocumentation & Tutorials\n-------------------------\n\nPlease visit our `website <https://tapqir.readthedocs.io/>`_ for documentation, tutorials, and general information.\n\nAnnouncements\n-------------\n\nTo get notified about new releases sign in to Github, go to top right corner of this page and click on Watch -> Custom -> Releases.\n\nDiscussions/Q&As\n----------------\n\nPlease post questions about the software on our `forum <https://github.com/gelles-brandeis/tapqir/discussions>`_. We will try to respond promptly.\n\nChangelog\n---------\n\nTo see the entire list of releases and changelogs go to `releases <https://github.com/gelles-brandeis/tapqir/releases>`_.\n\n\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Bayesian analysis of co-localization single-molecule microscopy image data",
    "version": "1.1.19",
    "project_urls": {
        "Documentation": "https://tapqir.readthedocs.io",
        "Homepage": "https://tapqir.readthedocs.io",
        "Source": "https://github.com/gelles-brandeis/tapqir"
    },
    "split_keywords": [
        "image-classification",
        "probabilistic-programming",
        "cosmos",
        "pyro"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "381213dfa99717d5faee2e231b119ac61b1db582c5500f9b2e802580f03d1861",
                "md5": "d56ad1384d8b40ea753b6a7e7c221c3f",
                "sha256": "a44c833d30f2eb8db6c604cdccdbed2d2c9fedc9aad769977b385903fe8a8078"
            },
            "downloads": -1,
            "filename": "tapqir-1.1.19-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d56ad1384d8b40ea753b6a7e7c221c3f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 79512,
            "upload_time": "2023-07-07T15:44:04",
            "upload_time_iso_8601": "2023-07-07T15:44:04.262604Z",
            "url": "https://files.pythonhosted.org/packages/38/12/13dfa99717d5faee2e231b119ac61b1db582c5500f9b2e802580f03d1861/tapqir-1.1.19-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e193a68441097fb70861488f1b857b7ccfbdb613fd6815da7b67c8f4fb8f8680",
                "md5": "8dfe25b9778ddacb06a512bbfe7fa1cd",
                "sha256": "c26d3e60ab3547edb8e70ad4da5668235a69703632766b681c81b0ffc1cb4e8c"
            },
            "downloads": -1,
            "filename": "tapqir-1.1.19.tar.gz",
            "has_sig": false,
            "md5_digest": "8dfe25b9778ddacb06a512bbfe7fa1cd",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 83488,
            "upload_time": "2023-07-07T15:44:05",
            "upload_time_iso_8601": "2023-07-07T15:44:05.969700Z",
            "url": "https://files.pythonhosted.org/packages/e1/93/a68441097fb70861488f1b857b7ccfbdb613fd6815da7b67c8f4fb8f8680/tapqir-1.1.19.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-07 15:44:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "gelles-brandeis",
    "github_project": "tapqir",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "tapqir"
}
        
Elapsed time: 0.09603s