tce-lib


Nametce-lib JSON
Version 0.3.3 PyPI version JSON
download
home_pageNone
Summarytensor cluster expansion library for solid solution modeling
upload_time2025-09-16 19:35:47
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords alloys ase cluster expansion density functional theory machine learning materials science monte carlo scientific computing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # tce-lib

[![Custom shields.io](https://img.shields.io/badge/docs-orange?logo=github&logoColor=green&label=gh-pages)](https://muexly.github.io/tce-lib)
[![Stable Version](https://img.shields.io/pypi/v/tce-lib?color=blue)](https://pypi.org/project/tce-lib/)
[![Static Badge](https://img.shields.io/badge/License-MIT-8A2BE2)](https://en.wikipedia.org/wiki/MIT_License)


[![Linting: Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/charliermarsh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![Checked with mypy](https://www.mypy-lang.org/static/mypy_badge.svg)](https://mypy-lang.org/)
[![Tested with pytest](https://img.shields.io/badge/pytest-tested-blue?logo=pytest)](https://docs.pytest.org/en/stable/)

<img src="https://raw.githubusercontent.com/MUEXLY/tce-lib/refs/heads/main/assets/logo.png" alt="tce-lib logo" style="width:50%;height:auto;">


## 🔎 What is tce-lib?

`tce-lib` is a library for creating and deploying tensor cluster expansion models of concentrated alloys following
our work on [arXiv](https://arxiv.org/abs/2509.04686). The core philosophy of `tce-lib` is to respect the 
[strategy pattern](https://en.wikipedia.org/wiki/Strategy_pattern) as core to the library's functionality. This design
pattern stages workflows as sequences of strategies, of which the user can override each. This allows for the majority 
of users to plug-and-play for an ordinary workflow, while still supporting fine-grained autonomy for more advanced 
users. 

## 📩 Installation

`tce-lib` is installable via the Python Package Index:

```shell
pip install tce-lib
```

or, from source:

```shell
git clone https://github.com/MUEXLY/tce-lib
pip install -e tce-lib/
```

## 📌 Citation

Please cite our work [here](https://arxiv.org/abs/2509.04686) if you use `tce-lib` in your work.

## 💙 Acknowledgements

Authors acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division under Award No. DE-SC0022980.

## 🐝 Found a bug?

Please open an issue [here](https://github.com/MUEXLY/tce/issues), with a description of the issue and a [minimal, reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) of the issue.

## 📑 License

`tce-lib` is released under the MIT license.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "tce-lib",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "alloys, ase, cluster expansion, density functional theory, machine learning, materials science, monte carlo, scientific computing",
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/a1/e6/0e02e056a805f4a969017ecd7b2890bda7996089dd673cba1691f025fb6f/tce_lib-0.3.3.tar.gz",
    "platform": null,
    "description": "# tce-lib\n\n[![Custom shields.io](https://img.shields.io/badge/docs-orange?logo=github&logoColor=green&label=gh-pages)](https://muexly.github.io/tce-lib)\n[![Stable Version](https://img.shields.io/pypi/v/tce-lib?color=blue)](https://pypi.org/project/tce-lib/)\n[![Static Badge](https://img.shields.io/badge/License-MIT-8A2BE2)](https://en.wikipedia.org/wiki/MIT_License)\n\n\n[![Linting: Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/charliermarsh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n[![Checked with mypy](https://www.mypy-lang.org/static/mypy_badge.svg)](https://mypy-lang.org/)\n[![Tested with pytest](https://img.shields.io/badge/pytest-tested-blue?logo=pytest)](https://docs.pytest.org/en/stable/)\n\n<img src=\"https://raw.githubusercontent.com/MUEXLY/tce-lib/refs/heads/main/assets/logo.png\" alt=\"tce-lib logo\" style=\"width:50%;height:auto;\">\n\n\n## \ud83d\udd0e What is tce-lib?\n\n`tce-lib` is a library for creating and deploying tensor cluster expansion models of concentrated alloys following\nour work on [arXiv](https://arxiv.org/abs/2509.04686). The core philosophy of `tce-lib` is to respect the \n[strategy pattern](https://en.wikipedia.org/wiki/Strategy_pattern) as core to the library's functionality. This design\npattern stages workflows as sequences of strategies, of which the user can override each. This allows for the majority \nof users to plug-and-play for an ordinary workflow, while still supporting fine-grained autonomy for more advanced \nusers. \n\n## \ud83d\udce9 Installation\n\n`tce-lib` is installable via the Python Package Index:\n\n```shell\npip install tce-lib\n```\n\nor, from source:\n\n```shell\ngit clone https://github.com/MUEXLY/tce-lib\npip install -e tce-lib/\n```\n\n## \ud83d\udccc Citation\n\nPlease cite our work [here](https://arxiv.org/abs/2509.04686) if you use `tce-lib` in your work.\n\n## \ud83d\udc99 Acknowledgements\n\nAuthors acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division under Award No. DE-SC0022980.\n\n## \ud83d\udc1d Found a bug?\n\nPlease open an issue [here](https://github.com/MUEXLY/tce/issues), with a description of the issue and a [minimal, reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) of the issue.\n\n## \ud83d\udcd1 License\n\n`tce-lib` is released under the MIT license.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "tensor cluster expansion library for solid solution modeling",
    "version": "0.3.3",
    "project_urls": {
        "Homepage": "https://github.com/MUEXLY/tce-lib"
    },
    "split_keywords": [
        "alloys",
        " ase",
        " cluster expansion",
        " density functional theory",
        " machine learning",
        " materials science",
        " monte carlo",
        " scientific computing"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b60e3ee6c6b22950ff4fff1404fc593f0ced7c1e6d96ba005ee762121a6f39a6",
                "md5": "719632d19c39e5a2ed6ec3cfa3fbb7b5",
                "sha256": "200e6194d557aa48945adeccd450c795b058ce0308ab024a40a524b0f5e0e78c"
            },
            "downloads": -1,
            "filename": "tce_lib-0.3.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "719632d19c39e5a2ed6ec3cfa3fbb7b5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 1543665,
            "upload_time": "2025-09-16T19:35:45",
            "upload_time_iso_8601": "2025-09-16T19:35:45.930878Z",
            "url": "https://files.pythonhosted.org/packages/b6/0e/3ee6c6b22950ff4fff1404fc593f0ced7c1e6d96ba005ee762121a6f39a6/tce_lib-0.3.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a1e60e02e056a805f4a969017ecd7b2890bda7996089dd673cba1691f025fb6f",
                "md5": "d08af813b5d4266cc0b7fd6f51e6d571",
                "sha256": "b09c6bf3af3a44eab0673ee7e84fd8976b498332ae03a63166cbee5467e67621"
            },
            "downloads": -1,
            "filename": "tce_lib-0.3.3.tar.gz",
            "has_sig": false,
            "md5_digest": "d08af813b5d4266cc0b7fd6f51e6d571",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 893526,
            "upload_time": "2025-09-16T19:35:47",
            "upload_time_iso_8601": "2025-09-16T19:35:47.817342Z",
            "url": "https://files.pythonhosted.org/packages/a1/e6/0e02e056a805f4a969017ecd7b2890bda7996089dd673cba1691f025fb6f/tce_lib-0.3.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-16 19:35:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MUEXLY",
    "github_project": "tce-lib",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "tce-lib"
}
        
Elapsed time: 4.04308s