teachable-machine


Nameteachable-machine JSON
Version 1.2.1 PyPI version JSON
download
home_pagehttps://github.com/MeqdadDev/teachable-machine
SummaryA Python package designed to simplify the integration of exported models from Google's Teachable Machine platform into various environments. This tool was specifically crafted to work seamlessly with Teachable Machine, making it easier to implement and use your trained models.
upload_time2024-08-18 12:05:59
maintainerNone
docs_urlNone
authorMeqdad Dev
requires_python>=3.7
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Teachable Machine
_By: [Meqdad Darwish](https://github.com/MeqdadDev)_


<p align="center">
<picture>
  <img alt="Teachable Machine Package Logo" src="https://meqdaddev.github.io/teachable-machine/logo.png" width="80%" height="80%" >
</picture>
</p>

[![Downloads](https://static.pepy.tech/badge/teachable-machine)](https://pepy.tech/project/teachable-machine)
[![MIT License](https://img.shields.io/badge/License-MIT-green.svg)](https://choosealicense.com/licenses/mit/)
[![PyPI](https://img.shields.io/pypi/v/teachable-machine)](https://pypi.org/project/teachable-machine/)

A Python package designed to simplify the integration of exported models from Google's [Teachable Machine](https://teachablemachine.withgoogle.com/) platform into various environments.
This tool was specifically crafted to work seamlessly with Teachable Machine, making it easier to implement and use your trained models.

Source Code is published on [GitHub](https://github.com/MeqdadDev/teachable-machine)

Read more about the project (requirements, installation, examples and more) in the [Documentation Website](https://meqdaddev.github.io/teachable-machine/) 

## Supported Classifiers

**Image Classification**: use exported keras model from Teachable Machine platform.

## Requirements

``` Python >= 3.7 ```

## How to install package

```bash
pip install teachable-machine
```

## Example

An example for teachable machine package with OpenCV:

```python
from teachable_machine import TeachableMachine
import cv2 as cv

cap = cv.VideoCapture(0)
model = TeachableMachine(model_path="keras_model.h5",
                         labels_file_path="labels.txt")

image_path = "screenshot.jpg"

while True:
    _, img = cap.read()
    cv.imwrite(image_path, img)

    result, resultImage = model.classify_and_show(image_path)

    print("class_index", result["class_index"])

    print("class_name:::", result["class_name"])

    print("class_confidence:", result["class_confidence"])

    print("predictions:", result["predictions"])

    cv.imshow("Video Stream", resultImage)

    k = cv.waitKey(1)
    if k == 27:  # Press ESC to close the camera view
        break
    
cap.release()
cv.destroyAllWindows()
```

Values of `result` are assigned based on the content of `labels.txt` file.

For more; take a look on [these examples](https://meqdaddev.github.io/teachable-machine/codeExamples/)

### Links:

- [Documentation](https://meqdaddev.github.io/teachable-machine)

- [PyPI](https://pypi.org/project/teachable-machine/)

- [Source Code](https://github.com/MeqdadDev/teachable-machine)

- [Teachable Machine Platform](https://teachablemachine.withgoogle.com/)



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/MeqdadDev/teachable-machine",
    "name": "teachable-machine",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "Meqdad Dev",
    "author_email": "meqdad.darweesh@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/0c/db/94c7545f0ef8f8a3d10781df06a653fabb2cb8e9b7c19af77cc64d78bb2e/teachable_machine-1.2.1.tar.gz",
    "platform": null,
    "description": "# Teachable Machine\n_By: [Meqdad Darwish](https://github.com/MeqdadDev)_\n\n\n<p align=\"center\">\n<picture>\n  <img alt=\"Teachable Machine Package Logo\" src=\"https://meqdaddev.github.io/teachable-machine/logo.png\" width=\"80%\" height=\"80%\" >\n</picture>\n</p>\n\n[![Downloads](https://static.pepy.tech/badge/teachable-machine)](https://pepy.tech/project/teachable-machine)\n[![MIT License](https://img.shields.io/badge/License-MIT-green.svg)](https://choosealicense.com/licenses/mit/)\n[![PyPI](https://img.shields.io/pypi/v/teachable-machine)](https://pypi.org/project/teachable-machine/)\n\nA Python package designed to simplify the integration of exported models from Google's [Teachable Machine](https://teachablemachine.withgoogle.com/) platform into various environments.\nThis tool was specifically crafted to work seamlessly with Teachable Machine, making it easier to implement and use your trained models.\n\nSource Code is published on [GitHub](https://github.com/MeqdadDev/teachable-machine)\n\nRead more about the project (requirements, installation, examples and more) in the [Documentation Website](https://meqdaddev.github.io/teachable-machine/) \n\n## Supported Classifiers\n\n**Image Classification**: use exported keras model from Teachable Machine platform.\n\n## Requirements\n\n``` Python >= 3.7 ```\n\n## How to install package\n\n```bash\npip install teachable-machine\n```\n\n## Example\n\nAn example for teachable machine package with OpenCV:\n\n```python\nfrom teachable_machine import TeachableMachine\nimport cv2 as cv\n\ncap = cv.VideoCapture(0)\nmodel = TeachableMachine(model_path=\"keras_model.h5\",\n                         labels_file_path=\"labels.txt\")\n\nimage_path = \"screenshot.jpg\"\n\nwhile True:\n    _, img = cap.read()\n    cv.imwrite(image_path, img)\n\n    result, resultImage = model.classify_and_show(image_path)\n\n    print(\"class_index\", result[\"class_index\"])\n\n    print(\"class_name:::\", result[\"class_name\"])\n\n    print(\"class_confidence:\", result[\"class_confidence\"])\n\n    print(\"predictions:\", result[\"predictions\"])\n\n    cv.imshow(\"Video Stream\", resultImage)\n\n    k = cv.waitKey(1)\n    if k == 27:  # Press ESC to close the camera view\n        break\n    \ncap.release()\ncv.destroyAllWindows()\n```\n\nValues of `result` are assigned based on the content of `labels.txt` file.\n\nFor more; take a look on [these examples](https://meqdaddev.github.io/teachable-machine/codeExamples/)\n\n### Links:\n\n- [Documentation](https://meqdaddev.github.io/teachable-machine)\n\n- [PyPI](https://pypi.org/project/teachable-machine/)\n\n- [Source Code](https://github.com/MeqdadDev/teachable-machine)\n\n- [Teachable Machine Platform](https://teachablemachine.withgoogle.com/)\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Python package designed to simplify the integration of exported models from Google's Teachable Machine platform into various environments.     This tool was specifically crafted to work seamlessly with Teachable Machine, making it easier to implement and use your trained models.",
    "version": "1.2.1",
    "project_urls": {
        "Homepage": "https://github.com/MeqdadDev/teachable-machine"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8ea3d6a4ba57b80596fb950b20ee7549979128ceb2411cd94674a1332a18ac88",
                "md5": "145e5059c56c9d439e56fceee5234a83",
                "sha256": "039d9978f5df7078180d7ab6c56c2659a6037251ad16b9f003ce72914bec70cf"
            },
            "downloads": -1,
            "filename": "teachable_machine-1.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "145e5059c56c9d439e56fceee5234a83",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 5350,
            "upload_time": "2024-08-18T12:05:57",
            "upload_time_iso_8601": "2024-08-18T12:05:57.640503Z",
            "url": "https://files.pythonhosted.org/packages/8e/a3/d6a4ba57b80596fb950b20ee7549979128ceb2411cd94674a1332a18ac88/teachable_machine-1.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0cdb94c7545f0ef8f8a3d10781df06a653fabb2cb8e9b7c19af77cc64d78bb2e",
                "md5": "462fcf4f14b237445ee08ab9faa443de",
                "sha256": "d6f7b6cdfe3a65320195b21408352f265d7ea282b7d6824c5030d8d63e89fae0"
            },
            "downloads": -1,
            "filename": "teachable_machine-1.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "462fcf4f14b237445ee08ab9faa443de",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 5112,
            "upload_time": "2024-08-18T12:05:59",
            "upload_time_iso_8601": "2024-08-18T12:05:59.015574Z",
            "url": "https://files.pythonhosted.org/packages/0c/db/94c7545f0ef8f8a3d10781df06a653fabb2cb8e9b7c19af77cc64d78bb2e/teachable_machine-1.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-18 12:05:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MeqdadDev",
    "github_project": "teachable-machine",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "teachable-machine"
}
        
Elapsed time: 0.31951s