technicators


Nametechnicators JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/Tejaromalius/Technicators
SummaryLibrary for calculating diverse financial metrics
upload_time2024-01-30 08:07:04
maintainer
docs_urlNone
authortejaromalius
requires_python>=3.9,<4.0
licenseMIT
keywords market analyze indicator
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Technicators
[![PyPI - Version](https://img.shields.io/pypi/v/technicators?color=blue)](https://github.com/Tejaromalius/Technicators/blob/main/pyproject.toml)
[![PyPI - License](https://img.shields.io/pypi/l/technicators?color=red)](https://github.com/Tejaromalius/Technicators/blob/main/LICENSE)
[![PyPI - Status](https://img.shields.io/pypi/status/technicators?color=%20%23239b56%20)](https://pypi.org/project/technicators/)

**Technicators** provides a collection of methods for calculating various technical indicators commonly used in financial analysis.

## Installation

```bash
pip install technicators
```

## Usage
```
import pandas as pd
from technicators import Technicators

# Sample time series data
data = pd.Series([...])

# Calculate ALMA
alma_values = Technicators.ALMA(data, period=14)

# Calculate EMA
ema_values = Technicators.EMA(data, period=14)

# Calculate HMA
hma_values = Technicators.HMA(data, period=14)

# Calculate SMMA
smma_values = Technicators.SMMA(data, period=14)

# Calculate TEMA
tema_values = Technicators.TEMA(data, period=14)

# Calculate WMA
wma_values = Technicators.WMA(data, period=14)
```

## Method Details

### ALMA

- Calculates the Arnaud Legoux Moving Average (ALMA) using a variable window.
- **Parameters:**
  - `dataset` (pd.Series): The input time series data.
  - `period` (int): The period over which to calculate the ALMA.
  - `offset` (float): Offset multiplier for ALMA calculation. Default is 0.85.
  - `sigma` (float): Standard deviation factor for ALMA calculation. Default is 6.
- **Returns:**
  - `pd.Series`: A time series representing the ALMA values.

### EMA

- Calculates the Exponential Moving Average (EMA) of a given time series.
- **Parameters:**
  - `dataset` (pd.Series): The input time series data.
  - `period` (int): The period over which to calculate the EMA.
  - `adjust` (bool): Whether to adjust the EMA calculation. Default is True.
- **Returns:**
  - `pd.Series`: A time series representing the EMA values.

### HMA

- Calculates the Hull Moving Average (HMA) using weighted moving averages.
- **Parameters:**
  - `dataset` (pd.Series): The input time series data.
  - `period` (int): The period over which to calculate the HMA.
- **Returns:**
  - `pd.Series`: A time series representing the HMA values.

### SMMA

- Calculates the Smoothed Moving Average (SMMA) using exponential smoothing.
- **Parameters:**
  - `dataset` (pd.Series): The input time series data.
  - `period` (int): The period over which to calculate the SMMA.
  - `adjust` (bool): Whether to adjust the SMMA calculation. Default is True.
- **Returns:**
  - `pd.Series`: A time series representing the SMMA values.

### TEMA

- Calculates the Triple Exponential Moving Average (TEMA) using triple exponential smoothing.
- **Parameters:**
  - `dataset` (pd.Series): The input time series data.
  - `period` (int): The period over which to calculate the TEMA.
  - `adjust` (bool): Whether to adjust the TEMA calculation. Default is True.
- **Returns:**
  - `pd.Series`: A time series representing the TEMA values.

### WMA

- Calculates the Weighted Moving Average (WMA) using weighted averages.
- **Parameters:**
  - `dataset` (pd.Series): The input time series data.
  - `period` (int): The period over which to calculate the WMA.
- **Returns:**
  - `pd.Series`: A time series representing the WMA values.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Tejaromalius/Technicators",
    "name": "technicators",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9,<4.0",
    "maintainer_email": "",
    "keywords": "market,analyze,indicator",
    "author": "tejaromalius",
    "author_email": "tayefi.ilia@protonmail.com",
    "download_url": "https://files.pythonhosted.org/packages/2f/2a/1b5f38a9885d412cde3d7c9c801e24837f84e3c265e0db3abf26611e9dca/technicators-1.0.1.tar.gz",
    "platform": null,
    "description": "# Technicators\n[![PyPI - Version](https://img.shields.io/pypi/v/technicators?color=blue)](https://github.com/Tejaromalius/Technicators/blob/main/pyproject.toml)\n[![PyPI - License](https://img.shields.io/pypi/l/technicators?color=red)](https://github.com/Tejaromalius/Technicators/blob/main/LICENSE)\n[![PyPI - Status](https://img.shields.io/pypi/status/technicators?color=%20%23239b56%20)](https://pypi.org/project/technicators/)\n\n**Technicators** provides a collection of methods for calculating various technical indicators commonly used in financial analysis.\n\n## Installation\n\n```bash\npip install technicators\n```\n\n## Usage\n```\nimport pandas as pd\nfrom technicators import Technicators\n\n# Sample time series data\ndata = pd.Series([...])\n\n# Calculate ALMA\nalma_values = Technicators.ALMA(data, period=14)\n\n# Calculate EMA\nema_values = Technicators.EMA(data, period=14)\n\n# Calculate HMA\nhma_values = Technicators.HMA(data, period=14)\n\n# Calculate SMMA\nsmma_values = Technicators.SMMA(data, period=14)\n\n# Calculate TEMA\ntema_values = Technicators.TEMA(data, period=14)\n\n# Calculate WMA\nwma_values = Technicators.WMA(data, period=14)\n```\n\n## Method Details\n\n### ALMA\n\n- Calculates the Arnaud Legoux Moving Average (ALMA) using a variable window.\n- **Parameters:**\n  - `dataset` (pd.Series): The input time series data.\n  - `period` (int): The period over which to calculate the ALMA.\n  - `offset` (float): Offset multiplier for ALMA calculation. Default is 0.85.\n  - `sigma` (float): Standard deviation factor for ALMA calculation. Default is 6.\n- **Returns:**\n  - `pd.Series`: A time series representing the ALMA values.\n\n### EMA\n\n- Calculates the Exponential Moving Average (EMA) of a given time series.\n- **Parameters:**\n  - `dataset` (pd.Series): The input time series data.\n  - `period` (int): The period over which to calculate the EMA.\n  - `adjust` (bool): Whether to adjust the EMA calculation. Default is True.\n- **Returns:**\n  - `pd.Series`: A time series representing the EMA values.\n\n### HMA\n\n- Calculates the Hull Moving Average (HMA) using weighted moving averages.\n- **Parameters:**\n  - `dataset` (pd.Series): The input time series data.\n  - `period` (int): The period over which to calculate the HMA.\n- **Returns:**\n  - `pd.Series`: A time series representing the HMA values.\n\n### SMMA\n\n- Calculates the Smoothed Moving Average (SMMA) using exponential smoothing.\n- **Parameters:**\n  - `dataset` (pd.Series): The input time series data.\n  - `period` (int): The period over which to calculate the SMMA.\n  - `adjust` (bool): Whether to adjust the SMMA calculation. Default is True.\n- **Returns:**\n  - `pd.Series`: A time series representing the SMMA values.\n\n### TEMA\n\n- Calculates the Triple Exponential Moving Average (TEMA) using triple exponential smoothing.\n- **Parameters:**\n  - `dataset` (pd.Series): The input time series data.\n  - `period` (int): The period over which to calculate the TEMA.\n  - `adjust` (bool): Whether to adjust the TEMA calculation. Default is True.\n- **Returns:**\n  - `pd.Series`: A time series representing the TEMA values.\n\n### WMA\n\n- Calculates the Weighted Moving Average (WMA) using weighted averages.\n- **Parameters:**\n  - `dataset` (pd.Series): The input time series data.\n  - `period` (int): The period over which to calculate the WMA.\n- **Returns:**\n  - `pd.Series`: A time series representing the WMA values.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Library for calculating diverse financial metrics",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/Tejaromalius/Technicators",
        "Repository": "https://github.com/Tejaromalius/Technicators"
    },
    "split_keywords": [
        "market",
        "analyze",
        "indicator"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cb1c8d4a7dae0e2a322d4c2c27b0a9113054f504d27b428ddedacf5bb20c2034",
                "md5": "9c4d0313c5303be62b56091f6ab2f5a2",
                "sha256": "dc44659265db0f54403459d0a7df95a46ca13143a86893296512bbd142d49df7"
            },
            "downloads": -1,
            "filename": "technicators-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9c4d0313c5303be62b56091f6ab2f5a2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9,<4.0",
            "size": 4397,
            "upload_time": "2024-01-30T08:07:00",
            "upload_time_iso_8601": "2024-01-30T08:07:00.235560Z",
            "url": "https://files.pythonhosted.org/packages/cb/1c/8d4a7dae0e2a322d4c2c27b0a9113054f504d27b428ddedacf5bb20c2034/technicators-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2f2a1b5f38a9885d412cde3d7c9c801e24837f84e3c265e0db3abf26611e9dca",
                "md5": "297917f3ce7df7bb36c52e0c2f737f84",
                "sha256": "848b8fc1ba52a7fc2954f87cfb56d79e1fcda7d3033672da83b599dbb6c84ff1"
            },
            "downloads": -1,
            "filename": "technicators-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "297917f3ce7df7bb36c52e0c2f737f84",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9,<4.0",
            "size": 3643,
            "upload_time": "2024-01-30T08:07:04",
            "upload_time_iso_8601": "2024-01-30T08:07:04.607327Z",
            "url": "https://files.pythonhosted.org/packages/2f/2a/1b5f38a9885d412cde3d7c9c801e24837f84e3c265e0db3abf26611e9dca/technicators-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-30 08:07:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Tejaromalius",
    "github_project": "Technicators",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "technicators"
}
        
Elapsed time: 2.48036s