tefas


Nametefas JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/atahanuz/tefas
SummaryExtract text from a YouTube video in a single command, using OpenAi's Whisper speech recognition model
upload_time2023-12-02 19:31:13
maintainer
docs_urlNone
authorAtahan Uz
requires_python
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # tefas


Github: https://github.com/atahanuz/tefas/

Get daily price data of 5 years from TEFAS, Turkey's exchange traded funds platform. (in Turkish: Yatırım Fonları) <br>
https://www.tefas.gov.tr

TEFAS doesn't provice an API for easy data retrieval, so the program uses Selenium to physically visit the website and scrape the data.




## Installation
```
pip install tefas
```

## Usage

```python
import tefas

data= tefas.get_data("AFT","MAC","TCD")
```
call tefas.get_data() function with the ETF names. You can pass a single or as many ETFs as you want.
You will get a Pandas dataframe with days as indexes and each ETFs daily prices as columns.

You can pass an optional verbose=False argument if you want to disable printing scraping progression to the console.

```python
import tefas

data= tefas.get_data("IPJ",verbose=False)
```

### Example Dataframe
<img src="https://i.imgur.com/0uSyTcH.png" width="50%" height="50%">




## Additional Features ?

Initially, I thougt about adding various data manipulation functions to the library. But to keep the library lightweight, I think it is enough to retrieve the dataframe. Because once the dataframe is ready, users can easily process the data according to their needs using the Pandas library.
Examples:

```python
import tefas

data= tefas.get_data("AFT","MAC","TCD")

# print the correlation matrix between ETFs
print(data.corr(),"\n")

#print total percentage return for each ETF
for column in data:
    print(f"{column} total return: {data[column].iloc[-1] / data[column].iloc[0] * 100 - 100:.2f} %")
```
### Output
<img src="https://i.imgur.com/nKX6Idi.png" width="50%" height="50%">




## Contact
Raise an issue on the GitHub repo and I'll happily respond:
https://github.com/atahanuz/tefas/issues/new
<br>

*Disclaimer: This program doesn't provide any investment advice, it simply displays data based on user request.*




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/atahanuz/tefas",
    "name": "tefas",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Atahan Uz",
    "author_email": "atahanuz23@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/07/48/932c80018ed00e1878580fc76c050c8f93cb8c1038b6f7fc1cf3660b1dc2/tefas-1.0.1.tar.gz",
    "platform": null,
    "description": "# tefas\n\n\nGithub: https://github.com/atahanuz/tefas/\n\nGet daily price data of 5 years from TEFAS, Turkey's exchange traded funds platform. (in Turkish: Yat\u0131r\u0131m Fonlar\u0131) <br>\nhttps://www.tefas.gov.tr\n\nTEFAS doesn't provice an API for easy data retrieval, so the program uses Selenium to physically visit the website and scrape the data.\n\n\n\n\n## Installation\n```\npip install tefas\n```\n\n## Usage\n\n```python\nimport tefas\n\ndata= tefas.get_data(\"AFT\",\"MAC\",\"TCD\")\n```\ncall tefas.get_data() function with the ETF names. You can pass a single or as many ETFs as you want.\nYou will get a Pandas dataframe with days as indexes and each ETFs daily prices as columns.\n\nYou can pass an optional verbose=False argument if you want to disable printing scraping progression to the console.\n\n```python\nimport tefas\n\ndata= tefas.get_data(\"IPJ\",verbose=False)\n```\n\n### Example Dataframe\n<img src=\"https://i.imgur.com/0uSyTcH.png\" width=\"50%\" height=\"50%\">\n\n\n\n\n## Additional Features ?\n\nInitially, I thougt about adding various data manipulation functions to the library. But to keep the library lightweight, I think it is enough to retrieve the dataframe. Because once the dataframe is ready, users can easily process the data according to their needs using the Pandas library.\nExamples:\n\n```python\nimport tefas\n\ndata= tefas.get_data(\"AFT\",\"MAC\",\"TCD\")\n\n# print the correlation matrix between ETFs\nprint(data.corr(),\"\\n\")\n\n#print total percentage return for each ETF\nfor column in data:\n    print(f\"{column} total return: {data[column].iloc[-1] / data[column].iloc[0] * 100 - 100:.2f} %\")\n```\n### Output\n<img src=\"https://i.imgur.com/nKX6Idi.png\" width=\"50%\" height=\"50%\">\n\n\n\n\n## Contact\nRaise an issue on the GitHub repo and I'll happily respond:\nhttps://github.com/atahanuz/tefas/issues/new\n<br>\n\n*Disclaimer: This program doesn't provide any investment advice, it simply displays data based on user request.*\n\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Extract text from a YouTube video in a single command, using OpenAi's Whisper speech recognition model",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/atahanuz/tefas"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "96cc0c472ee088710d2199106439a6cbea542b79ed654ec5587837bd4136a176",
                "md5": "6886dd64d56b0a53f13ec0292b1782d7",
                "sha256": "81727cb491e0b0d80fe6b6ad29a30b212f6eb66f89f00a4f5c8abef2588d3ec8"
            },
            "downloads": -1,
            "filename": "tefas-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6886dd64d56b0a53f13ec0292b1782d7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3393,
            "upload_time": "2023-12-02T19:31:11",
            "upload_time_iso_8601": "2023-12-02T19:31:11.232892Z",
            "url": "https://files.pythonhosted.org/packages/96/cc/0c472ee088710d2199106439a6cbea542b79ed654ec5587837bd4136a176/tefas-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0748932c80018ed00e1878580fc76c050c8f93cb8c1038b6f7fc1cf3660b1dc2",
                "md5": "4d5b1300f143b24f17ca63faa2868472",
                "sha256": "d0f9ce1f61c65b8aee9b689e8283d8ef7c05071a591bf111beffca73b0c1592d"
            },
            "downloads": -1,
            "filename": "tefas-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "4d5b1300f143b24f17ca63faa2868472",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3194,
            "upload_time": "2023-12-02T19:31:13",
            "upload_time_iso_8601": "2023-12-02T19:31:13.228925Z",
            "url": "https://files.pythonhosted.org/packages/07/48/932c80018ed00e1878580fc76c050c8f93cb8c1038b6f7fc1cf3660b1dc2/tefas-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-02 19:31:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "atahanuz",
    "github_project": "tefas",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "tefas"
}
        
Elapsed time: 0.15844s