<img
align="left" width="200" height="120"
src="./docs/icon.png" alt="Temporal Mapper Logo">
## Temporal Mapper
### V.1.0.0 - October 06 '24
-----------------------------------------------
This is a library for using the Mapper for temporal topic modelling.
Though things broadly work now, the edge cases have not been throughly
tested.
Direct questions to Kaleb D. Ruscitti: kaleb.ruscitti at uwaterloo.ca .
Complete documentation is under construction on [Read The Docs](
https://temporal-mapper.readthedocs.io/en/latest/).
### Example:
#### arXiv Papers
From the arXiv API, we can retrieve ~500,000 article titles and abstracts,
use `SBERT` to embed them, and then UMAP to reduce to 2D.
Using [DataMapPlot](https://github.com/tutteinstitute/datamapplot) and
[TopicNaming](https://github.com/tutteinstitute/topicnaming) we can
produce a static plot of this data:

Now, using this repository we can additionally analyse the temporal
information. Using the Mapper algorithm with time as our lens
function, we create a *temporal graph* of the topics (clusters)
through time. The code includes two types of plots to visualize this
graph:
Centroid Plot | Temporal-Semantic Plot
:-------------------------:|:-------------------------:
 | 
### Installation
Install from PyPI:
`pip install temporal-mapper`
Or, clone the repo and install:
`git clone https://github.com/TutteInstitute/temporal-mapper.git`
`cd temporal-mapper && pip install .`
Raw data
{
"_id": null,
"home_page": null,
"name": "temporal-mapper",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "Mapper, TDA, Morse Theory, Temporal Topic Modeling",
"author": null,
"author_email": "Kaleb D Ruscitti <kaleb.ruscitti@uwaterloo.ca>",
"download_url": "https://files.pythonhosted.org/packages/42/71/b8f1ce8b760aea64f8524b6472886e6a480af729e633d47c69e72aa211d1/temporal_mapper-1.0.1.tar.gz",
"platform": null,
"description": "<img\nalign=\"left\" width=\"200\" height=\"120\" \nsrc=\"./docs/icon.png\" alt=\"Temporal Mapper Logo\">\n## Temporal Mapper\n\n### V.1.0.0 - October 06 '24\n-----------------------------------------------\nThis is a library for using the Mapper for temporal topic modelling.\nThough things broadly work now, the edge cases have not been throughly \ntested.\n\nDirect questions to Kaleb D. Ruscitti: kaleb.ruscitti at uwaterloo.ca .\n\nComplete documentation is under construction on [Read The Docs](\nhttps://temporal-mapper.readthedocs.io/en/latest/).\n\n### Example:\n#### arXiv Papers \nFrom the arXiv API, we can retrieve ~500,000 article titles and abstracts,\nuse `SBERT` to embed them, and then UMAP to reduce to 2D.\n\nUsing [DataMapPlot](https://github.com/tutteinstitute/datamapplot) and\n[TopicNaming](https://github.com/tutteinstitute/topicnaming) we can\nproduce a static plot of this data:\n\n\n\nNow, using this repository we can additionally analyse the temporal\ninformation. Using the Mapper algorithm with time as our lens\nfunction, we create a *temporal graph* of the topics (clusters)\nthrough time. The code includes two types of plots to visualize this\ngraph:\n\nCentroid Plot | Temporal-Semantic Plot\n:-------------------------:|:-------------------------:\n | \n\n### Installation\nInstall from PyPI:\n`pip install temporal-mapper`\n\nOr, clone the repo and install: \n`git clone https://github.com/TutteInstitute/temporal-mapper.git`\n`cd temporal-mapper && pip install .`\n",
"bugtrack_url": null,
"license": "BSD-3-Clause license",
"summary": null,
"version": "1.0.1",
"project_urls": null,
"split_keywords": [
"mapper",
" tda",
" morse theory",
" temporal topic modeling"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "646a68fb2145f2bc0118a9fa4686b1476e56bbc803c013eb2e172080370d77de",
"md5": "875cb236f416e22a4a697e39f22a9158",
"sha256": "cf06d5736ac0aad08f9faec5fbac3c699ce163a0c4ba49aa83acffbac4a7eeea"
},
"downloads": -1,
"filename": "temporal_mapper-1.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "875cb236f416e22a4a697e39f22a9158",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 14655,
"upload_time": "2025-02-20T20:08:36",
"upload_time_iso_8601": "2025-02-20T20:08:36.730632Z",
"url": "https://files.pythonhosted.org/packages/64/6a/68fb2145f2bc0118a9fa4686b1476e56bbc803c013eb2e172080370d77de/temporal_mapper-1.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4271b8f1ce8b760aea64f8524b6472886e6a480af729e633d47c69e72aa211d1",
"md5": "f6bf7a93886ee9ffc8bce85e979a9bc1",
"sha256": "737cc37aa85cd52018d69b6335de76292d8b57db4420918e8f3784a8b7c0b855"
},
"downloads": -1,
"filename": "temporal_mapper-1.0.1.tar.gz",
"has_sig": false,
"md5_digest": "f6bf7a93886ee9ffc8bce85e979a9bc1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 13362,
"upload_time": "2025-02-20T20:08:38",
"upload_time_iso_8601": "2025-02-20T20:08:38.549214Z",
"url": "https://files.pythonhosted.org/packages/42/71/b8f1ce8b760aea64f8524b6472886e6a480af729e633d47c69e72aa211d1/temporal_mapper-1.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-20 20:08:38",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "temporal-mapper"
}