tensorboard-easy


Nametensorboard-easy JSON
Version 0.2.3 PyPI version JSON
download
home_pagehttps://github.com/maxme1/tensorboard-easy
SummaryA tensorflow-independent tensorboard logger
upload_time2017-10-16 19:08:12
maintainer
docs_urlNone
authormaxme1
requires_python
licenseMIT
keywords tensorboard
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            A small logger that lets you write logs readable by Tensorboard but
doesn’t require Tensorflow.

Usage
=====

You can use the logger as a context manager:

.. code:: python

    from tensorboard_easy import Logger
    import numpy as np

    with Logger('/path/to/logs/folder/') as log:
        log.log_scalar('my_scalar', 100, step=1)
        log.log_image('my_images', np.random.rand(3, 20, 20), step=1)

or you can close the logger explicitly:

.. code:: python

    log = Logger('/some/other/logs')
    log.log_text('my_text', "Let's throw in some text", 0)
    log.log_text('my_text', [['Some', 'tensor'], ['with', 'text!']], 1)

    log.log_histogram('my_histogram', np.random.rand(500), step=0)
    log.close()

It supports scalars, images, text and histograms.

You can also create functions, that write to a specific tag and automatically
increase the step:

.. code:: python

    with Logger('/path/to/logs/folder/') as log:
        write_loss = log.make_log_scalar('loss')
        for i in range(1, 100):
            write_loss(1 / i)


Installation
============

It can be installed via pip:

``pip install tensorboard-easy``

The ``tensorflow`` or ``tensorflow-tensorboard`` packages are not
required, however you will need one of them to visualize your logs.
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/maxme1/tensorboard-easy",
    "name": "tensorboard-easy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "tensorboard",
    "author": "maxme1",
    "author_email": "maxs987@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b7/f6/e0348a81a3c4756204cc0ff65de0b0381a5fa653bcb74bbd81741f2dc41d/tensorboard-easy-0.2.3.tar.gz",
    "platform": "",
    "description": "A small logger that lets you write logs readable by Tensorboard but\ndoesn\u2019t require Tensorflow.\n\nUsage\n=====\n\nYou can use the logger as a context manager:\n\n.. code:: python\n\n    from tensorboard_easy import Logger\n    import numpy as np\n\n    with Logger('/path/to/logs/folder/') as log:\n        log.log_scalar('my_scalar', 100, step=1)\n        log.log_image('my_images', np.random.rand(3, 20, 20), step=1)\n\nor you can close the logger explicitly:\n\n.. code:: python\n\n    log = Logger('/some/other/logs')\n    log.log_text('my_text', \"Let's throw in some text\", 0)\n    log.log_text('my_text', [['Some', 'tensor'], ['with', 'text!']], 1)\n\n    log.log_histogram('my_histogram', np.random.rand(500), step=0)\n    log.close()\n\nIt supports scalars, images, text and histograms.\n\nYou can also create functions, that write to a specific tag and automatically\nincrease the step:\n\n.. code:: python\n\n    with Logger('/path/to/logs/folder/') as log:\n        write_loss = log.make_log_scalar('loss')\n        for i in range(1, 100):\n            write_loss(1 / i)\n\n\nInstallation\n============\n\nIt can be installed via pip:\n\n``pip install tensorboard-easy``\n\nThe ``tensorflow`` or ``tensorflow-tensorboard`` packages are not\nrequired, however you will need one of them to visualize your logs.",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A tensorflow-independent tensorboard logger",
    "version": "0.2.3",
    "project_urls": {
        "Download": "https://github.com/maxme1/tensorboard-easy/archive/0.2.3.tar.gz",
        "Homepage": "https://github.com/maxme1/tensorboard-easy"
    },
    "split_keywords": [
        "tensorboard"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b7f6e0348a81a3c4756204cc0ff65de0b0381a5fa653bcb74bbd81741f2dc41d",
                "md5": "28a46f3bd5b4cecc821f3656ffc67151",
                "sha256": "cd8a86045966b368bc1dd4b0c0e9a91f0011daa5d83188012a3f7467c04a6fd2"
            },
            "downloads": -1,
            "filename": "tensorboard-easy-0.2.3.tar.gz",
            "has_sig": false,
            "md5_digest": "28a46f3bd5b4cecc821f3656ffc67151",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 12023,
            "upload_time": "2017-10-16T19:08:12",
            "upload_time_iso_8601": "2017-10-16T19:08:12.256566Z",
            "url": "https://files.pythonhosted.org/packages/b7/f6/e0348a81a3c4756204cc0ff65de0b0381a5fa653bcb74bbd81741f2dc41d/tensorboard-easy-0.2.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2017-10-16 19:08:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "maxme1",
    "github_project": "tensorboard-easy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "tensorboard-easy"
}
        
Elapsed time: 0.13366s