A small logger that lets you write logs readable by Tensorboard but
doesn’t require Tensorflow.
Usage
=====
You can use the logger as a context manager:
.. code:: python
from tensorboard_easy import Logger
import numpy as np
with Logger('/path/to/logs/folder/') as log:
log.log_scalar('my_scalar', 100, step=1)
log.log_image('my_images', np.random.rand(3, 20, 20), step=1)
or you can close the logger explicitly:
.. code:: python
log = Logger('/some/other/logs')
log.log_text('my_text', "Let's throw in some text", 0)
log.log_text('my_text', [['Some', 'tensor'], ['with', 'text!']], 1)
log.log_histogram('my_histogram', np.random.rand(500), step=0)
log.close()
It supports scalars, images, text and histograms.
You can also create functions, that write to a specific tag and automatically
increase the step:
.. code:: python
with Logger('/path/to/logs/folder/') as log:
write_loss = log.make_log_scalar('loss')
for i in range(1, 100):
write_loss(1 / i)
Installation
============
It can be installed via pip:
``pip install tensorboard-easy``
The ``tensorflow`` or ``tensorflow-tensorboard`` packages are not
required, however you will need one of them to visualize your logs.
Raw data
{
"_id": null,
"home_page": "https://github.com/maxme1/tensorboard-easy",
"name": "tensorboard-easy",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "tensorboard",
"author": "maxme1",
"author_email": "maxs987@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/b7/f6/e0348a81a3c4756204cc0ff65de0b0381a5fa653bcb74bbd81741f2dc41d/tensorboard-easy-0.2.3.tar.gz",
"platform": "",
"description": "A small logger that lets you write logs readable by Tensorboard but\ndoesn\u2019t require Tensorflow.\n\nUsage\n=====\n\nYou can use the logger as a context manager:\n\n.. code:: python\n\n from tensorboard_easy import Logger\n import numpy as np\n\n with Logger('/path/to/logs/folder/') as log:\n log.log_scalar('my_scalar', 100, step=1)\n log.log_image('my_images', np.random.rand(3, 20, 20), step=1)\n\nor you can close the logger explicitly:\n\n.. code:: python\n\n log = Logger('/some/other/logs')\n log.log_text('my_text', \"Let's throw in some text\", 0)\n log.log_text('my_text', [['Some', 'tensor'], ['with', 'text!']], 1)\n\n log.log_histogram('my_histogram', np.random.rand(500), step=0)\n log.close()\n\nIt supports scalars, images, text and histograms.\n\nYou can also create functions, that write to a specific tag and automatically\nincrease the step:\n\n.. code:: python\n\n with Logger('/path/to/logs/folder/') as log:\n write_loss = log.make_log_scalar('loss')\n for i in range(1, 100):\n write_loss(1 / i)\n\n\nInstallation\n============\n\nIt can be installed via pip:\n\n``pip install tensorboard-easy``\n\nThe ``tensorflow`` or ``tensorflow-tensorboard`` packages are not\nrequired, however you will need one of them to visualize your logs.",
"bugtrack_url": null,
"license": "MIT",
"summary": "A tensorflow-independent tensorboard logger",
"version": "0.2.3",
"project_urls": {
"Download": "https://github.com/maxme1/tensorboard-easy/archive/0.2.3.tar.gz",
"Homepage": "https://github.com/maxme1/tensorboard-easy"
},
"split_keywords": [
"tensorboard"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b7f6e0348a81a3c4756204cc0ff65de0b0381a5fa653bcb74bbd81741f2dc41d",
"md5": "28a46f3bd5b4cecc821f3656ffc67151",
"sha256": "cd8a86045966b368bc1dd4b0c0e9a91f0011daa5d83188012a3f7467c04a6fd2"
},
"downloads": -1,
"filename": "tensorboard-easy-0.2.3.tar.gz",
"has_sig": false,
"md5_digest": "28a46f3bd5b4cecc821f3656ffc67151",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 12023,
"upload_time": "2017-10-16T19:08:12",
"upload_time_iso_8601": "2017-10-16T19:08:12.256566Z",
"url": "https://files.pythonhosted.org/packages/b7/f6/e0348a81a3c4756204cc0ff65de0b0381a5fa653bcb74bbd81741f2dc41d/tensorboard-easy-0.2.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2017-10-16 19:08:12",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "maxme1",
"github_project": "tensorboard-easy",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "tensorboard-easy"
}