tensorpac


Nametensorpac JSON
Version 0.6.5 PyPI version JSON
download
home_pagehttp://etiennecmb.github.io/tensorpac/
SummaryTensor-based Phase-Amplitude Coupling
upload_time2020-07-30 12:18:12
maintainerEtienne Combrisson
docs_urlNone
authorEtienne Combrisson
requires_python
licenseBSD 3-Clause License
keywords phase-amplitude coupling pac tensor oscillation meg eeg python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            =========
Tensorpac
=========

.. image:: https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac/badge.svg
    :target: https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac

.. image:: https://travis-ci.org/EtienneCmb/tensorpac.svg?branch=master
    :target: https://travis-ci.org/EtienneCmb/tensorpac

.. image:: https://circleci.com/gh/EtienneCmb/tensorpac/tree/master.svg?style=svg
    :target: https://circleci.com/gh/EtienneCmb/tensorpac/tree/master

.. image:: https://ci.appveyor.com/api/projects/status/0arxtw05583gc3e2/branch/master?svg=true
    :target: https://ci.appveyor.com/project/EtienneCmb/tensorpac/branch/master

.. image:: https://codecov.io/gh/EtienneCmb/tensorpac/branch/master/graph/badge.svg
  :target: https://codecov.io/gh/EtienneCmb/tensorpac

.. image:: https://badge.fury.io/py/tensorpac.svg
    :target: https://badge.fury.io/py/tensorpac

.. image:: https://pepy.tech/badge/tensorpac
    :target: https://pepy.tech/project/tensorpac

.. image:: https://badges.gitter.im/EtienneCmb/tensorpac.svg
    :target: https://gitter.im/EtienneCmb/tensorpac?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge


.. figure::  https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/tp.png
   :align:   center

Description
-----------

Tensorpac is an Python open-source toolbox for computing Phase-Amplitude Coupling (PAC) using tensors and parallel computing for an efficient, and highly flexible modular implementation of PAC metrics both known and novel. Check out our `documentation <http://etiennecmb.github.io/tensorpac/>`_  for details.

Installation
------------

Tensorpac uses NumPy, SciPy and joblib for parallel computing. To get started, just open your terminal and run :


.. code-block:: console

    $ pip install tensorpac

Code snippet & illustration
---------------------------

.. code-block:: python

  from tensorpac import Pac
  from tensorpac.signals import pac_signals_tort

  # Dataset of signals artificially coupled between 10hz and 100hz :
  n_epochs = 20   # number of trials
  n_times = 4000  # number of time points
  sf = 512.       # sampling frequency

  # Create artificially coupled signals using Tort method :
  data, time = pac_signals_tort(f_pha=10, f_amp=100, noise=2, n_epochs=n_epochs,
                                dpha=10, damp=10, sf=sf, n_times=n_times)

  # Define a Pac object
  p = Pac(idpac=(6, 0, 0), f_pha='hres', f_amp='hres')
  # Filter the data and extract pac
  xpac = p.filterfit(sf, data)

  # plot your Phase-Amplitude Coupling :
  p.comodulogram(xpac.mean(-1), cmap='Spectral_r', plotas='contour', ncontours=5,
                 title=r'10hz phase$\Leftrightarrow$100Hz amplitude coupling',
                 fz_title=14, fz_labels=13)

  p.show()



.. figure::  https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/readme.png
   :align:   center



            

Raw data

            {
    "_id": null,
    "home_page": "http://etiennecmb.github.io/tensorpac/",
    "name": "tensorpac",
    "maintainer": "Etienne Combrisson",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "phase-amplitude coupling pac tensor oscillation meg eeg python",
    "author": "Etienne Combrisson",
    "author_email": "e.combrisson@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/34/4c/b7cab0522f4e9601a7e44d14d250801267d20848498426da875f53896bab/tensorpac-0.6.5.tar.gz",
    "platform": "any",
    "description": "=========\nTensorpac\n=========\n\n.. image:: https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac/badge.svg\n    :target: https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac\n\n.. image:: https://travis-ci.org/EtienneCmb/tensorpac.svg?branch=master\n    :target: https://travis-ci.org/EtienneCmb/tensorpac\n\n.. image:: https://circleci.com/gh/EtienneCmb/tensorpac/tree/master.svg?style=svg\n    :target: https://circleci.com/gh/EtienneCmb/tensorpac/tree/master\n\n.. image:: https://ci.appveyor.com/api/projects/status/0arxtw05583gc3e2/branch/master?svg=true\n    :target: https://ci.appveyor.com/project/EtienneCmb/tensorpac/branch/master\n\n.. image:: https://codecov.io/gh/EtienneCmb/tensorpac/branch/master/graph/badge.svg\n  :target: https://codecov.io/gh/EtienneCmb/tensorpac\n\n.. image:: https://badge.fury.io/py/tensorpac.svg\n    :target: https://badge.fury.io/py/tensorpac\n\n.. image:: https://pepy.tech/badge/tensorpac\n    :target: https://pepy.tech/project/tensorpac\n\n.. image:: https://badges.gitter.im/EtienneCmb/tensorpac.svg\n    :target: https://gitter.im/EtienneCmb/tensorpac?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge\n\n\n.. figure::  https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/tp.png\n   :align:   center\n\nDescription\n-----------\n\nTensorpac is an Python open-source toolbox for computing Phase-Amplitude Coupling (PAC) using tensors and parallel computing for an efficient, and highly flexible modular implementation of PAC metrics both known and novel. Check out our `documentation <http://etiennecmb.github.io/tensorpac/>`_  for details.\n\nInstallation\n------------\n\nTensorpac uses NumPy, SciPy and joblib for parallel computing. To get started, just open your terminal and run :\n\n\n.. code-block:: console\n\n    $ pip install tensorpac\n\nCode snippet & illustration\n---------------------------\n\n.. code-block:: python\n\n  from tensorpac import Pac\n  from tensorpac.signals import pac_signals_tort\n\n  # Dataset of signals artificially coupled between 10hz and 100hz :\n  n_epochs = 20   # number of trials\n  n_times = 4000  # number of time points\n  sf = 512.       # sampling frequency\n\n  # Create artificially coupled signals using Tort method :\n  data, time = pac_signals_tort(f_pha=10, f_amp=100, noise=2, n_epochs=n_epochs,\n                                dpha=10, damp=10, sf=sf, n_times=n_times)\n\n  # Define a Pac object\n  p = Pac(idpac=(6, 0, 0), f_pha='hres', f_amp='hres')\n  # Filter the data and extract pac\n  xpac = p.filterfit(sf, data)\n\n  # plot your Phase-Amplitude Coupling :\n  p.comodulogram(xpac.mean(-1), cmap='Spectral_r', plotas='contour', ncontours=5,\n                 title=r'10hz phase$\\Leftrightarrow$100Hz amplitude coupling',\n                 fz_title=14, fz_labels=13)\n\n  p.show()\n\n\n\n.. figure::  https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/readme.png\n   :align:   center\n\n\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause License",
    "summary": "Tensor-based Phase-Amplitude Coupling",
    "version": "0.6.5",
    "project_urls": {
        "Download": "https://github.com/EtienneCmb/tensorpac/archive/v0.6.5.tar.gz",
        "Homepage": "http://etiennecmb.github.io/tensorpac/"
    },
    "split_keywords": [
        "phase-amplitude",
        "coupling",
        "pac",
        "tensor",
        "oscillation",
        "meg",
        "eeg",
        "python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4a748818a87c860f24dff6f22032cf3a6464d9aa7875db474fa676df0d919682",
                "md5": "3789930d4648f4caa7636c3614c932c5",
                "sha256": "579d65a0ba85400886dcf4074d5704d334ec9543bcf2d8cd2a6d9f63f37e57d0"
            },
            "downloads": -1,
            "filename": "tensorpac-0.6.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3789930d4648f4caa7636c3614c932c5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 423638,
            "upload_time": "2020-07-30T12:18:09",
            "upload_time_iso_8601": "2020-07-30T12:18:09.030581Z",
            "url": "https://files.pythonhosted.org/packages/4a/74/8818a87c860f24dff6f22032cf3a6464d9aa7875db474fa676df0d919682/tensorpac-0.6.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "344cb7cab0522f4e9601a7e44d14d250801267d20848498426da875f53896bab",
                "md5": "c8ecf5c4bcbebf2cf877ae0b33dbc650",
                "sha256": "a23511f13a38464a428504f890377b8664145b7c094dd5faa0adeb1fddfde248"
            },
            "downloads": -1,
            "filename": "tensorpac-0.6.5.tar.gz",
            "has_sig": false,
            "md5_digest": "c8ecf5c4bcbebf2cf877ae0b33dbc650",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 388109,
            "upload_time": "2020-07-30T12:18:12",
            "upload_time_iso_8601": "2020-07-30T12:18:12.039772Z",
            "url": "https://files.pythonhosted.org/packages/34/4c/b7cab0522f4e9601a7e44d14d250801267d20848498426da875f53896bab/tensorpac-0.6.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2020-07-30 12:18:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "EtienneCmb",
    "github_project": "tensorpac",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": true,
    "appveyor": true,
    "circle": true,
    "lcname": "tensorpac"
}
        
Elapsed time: 0.69506s