teradataml-plus


Nameteradataml-plus JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryPython Package that extends the functionality of the popular teradataml package through monkey-patching.
upload_time2025-07-25 11:10:26
maintainerNone
docs_urlNone
authorMartin Hillebrand
requires_python>=3.9
licenseNone
keywords teradataml-plus teradata database teradataml
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![Logo](https://raw.githubusercontent.com/martinhillebrand/tdmlplus/refs/heads/main/media/tdmlplus-logo.png)

# teradataml-plus

Python Package that extends the functionality of the popular [teradataml](https://pypi.org/project/teradataml/) package through [monkey-patching](https://en.wikipedia.org/wiki/Monkey_patch).
This is to use field-developed assets more naturally with the existing interface.

## Installation

* `pip install teradataml-plus`

## Quickstart

```python
#always import teradata-plus (tdmlplus) first
import tdmlplus

#then import teradataml. It will have all the additional functionality
import teradataml as tdml

# one additional function is for instance to get a correlation matrix straight from the DataFrame, just like in pandas

DF = tdml.DataFrame("some_table")
DF_corr = DF.corr() # not possible withot tdmlplus
```



# History

## v0.1.0 (2025-07-25)

* First release on PyPI.
* `teradataml.DataFrame.corr()` correlation matrix like in pandas
* `teradataml.random` # module for random data generation
  * `teradataml.random.randn(...)` # random normal distributed variables
* `teradataml.dba` a module for database utils
  * `teradataml.dba.get_amps_count()` # get number of amps 

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "teradataml-plus",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "teradataml-plus, teradata, database, teradataml",
    "author": "Martin Hillebrand",
    "author_email": "martin.hillebrand@teradata.com",
    "download_url": "https://files.pythonhosted.org/packages/d4/3f/86b7fa2af001573b0c1b552211bb9578fd34db67a6227e5d152d6c0fbfb5/teradataml-plus-0.1.0.tar.gz",
    "platform": null,
    "description": "![Logo](https://raw.githubusercontent.com/martinhillebrand/tdmlplus/refs/heads/main/media/tdmlplus-logo.png)\n\n# teradataml-plus\n\nPython Package that extends the functionality of the popular [teradataml](https://pypi.org/project/teradataml/) package through [monkey-patching](https://en.wikipedia.org/wiki/Monkey_patch).\nThis is to use field-developed assets more naturally with the existing interface.\n\n## Installation\n\n* `pip install teradataml-plus`\n\n## Quickstart\n\n```python\n#always import teradata-plus (tdmlplus) first\nimport tdmlplus\n\n#then import teradataml. It will have all the additional functionality\nimport teradataml as tdml\n\n# one additional function is for instance to get a correlation matrix straight from the DataFrame, just like in pandas\n\nDF = tdml.DataFrame(\"some_table\")\nDF_corr = DF.corr() # not possible withot tdmlplus\n```\n\n\n\n# History\n\n## v0.1.0 (2025-07-25)\n\n* First release on PyPI.\n* `teradataml.DataFrame.corr()` correlation matrix like in pandas\n* `teradataml.random` # module for random data generation\n  * `teradataml.random.randn(...)` # random normal distributed variables\n* `teradataml.dba` a module for database utils\n  * `teradataml.dba.get_amps_count()` # get number of amps \n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Python Package that extends the functionality of the popular teradataml package through monkey-patching.",
    "version": "0.1.0",
    "project_urls": null,
    "split_keywords": [
        "teradataml-plus",
        " teradata",
        " database",
        " teradataml"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "26aa6cff5e9ee3c40dbc12aaae8d8615f0c59b966daa7a929a0808e84c4c6aa6",
                "md5": "2a056cadd9c419775a2bfd36a63d0bb4",
                "sha256": "39fe8070000660a4fe5660c2cd6baee822c89f8d88aeb5ae1c72dd4a521ddc5a"
            },
            "downloads": -1,
            "filename": "teradataml_plus-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2a056cadd9c419775a2bfd36a63d0bb4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 17029,
            "upload_time": "2025-07-25T11:10:25",
            "upload_time_iso_8601": "2025-07-25T11:10:25.510795Z",
            "url": "https://files.pythonhosted.org/packages/26/aa/6cff5e9ee3c40dbc12aaae8d8615f0c59b966daa7a929a0808e84c4c6aa6/teradataml_plus-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d43f86b7fa2af001573b0c1b552211bb9578fd34db67a6227e5d152d6c0fbfb5",
                "md5": "fc69fd1b3c6be972dafe7663bba8c0fa",
                "sha256": "de75358013c8dcee7e6a740c607256ad14c173c5ae0dd7864ab92497a8b33700"
            },
            "downloads": -1,
            "filename": "teradataml-plus-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "fc69fd1b3c6be972dafe7663bba8c0fa",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 16573,
            "upload_time": "2025-07-25T11:10:26",
            "upload_time_iso_8601": "2025-07-25T11:10:26.524652Z",
            "url": "https://files.pythonhosted.org/packages/d4/3f/86b7fa2af001573b0c1b552211bb9578fd34db67a6227e5d152d6c0fbfb5/teradataml-plus-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-25 11:10:26",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "teradataml-plus"
}
        
Elapsed time: 0.67418s