[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# TeraGPT
Train a production grade GPT in less than 400 lines of code. Better than Karpathy's verison and GIGAGPT
## Install
`pip3 install teragpt `
## Usage
```python
import torch
from teragpt.main import TeraGPT
model = TeraGPT(
dim=4096,
depth=6,
heads=8,
num_tokens=20000,
)
x = torch.randint(0, 20000, (1, 4096))
out = model(x)
print(out.shape)
```
### Train
```python
from teragpt import train
train()
```
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/TeraGPT",
"name": "teragpt",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/45/41/d635027f7f2cec638e3753ee390fd1c69fecb5227fc1ad4820c23d38b9a9/teragpt-0.0.2.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# TeraGPT\nTrain a production grade GPT in less than 400 lines of code. Better than Karpathy's verison and GIGAGPT\n\n\n\n## Install\n`pip3 install teragpt `\n\n\n\n## Usage\n```python\nimport torch\nfrom teragpt.main import TeraGPT\n\nmodel = TeraGPT(\n dim=4096,\n depth=6,\n heads=8,\n num_tokens=20000,\n)\n\nx = torch.randint(0, 20000, (1, 4096))\n\nout = model(x)\nprint(out.shape)\n\n```\n\n### Train\n```python\nfrom teragpt import train\n\ntrain()\n\n```\n\n\n# License\nMIT\n\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Paper - Pytorch",
"version": "0.0.2",
"project_urls": {
"Documentation": "https://github.com/kyegomez/TeraGPT",
"Homepage": "https://github.com/kyegomez/TeraGPT",
"Repository": "https://github.com/kyegomez/TeraGPT"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d3276b015b09099c1a02c5e0b0742626c935e642096ab08c138da8f2a54eb669",
"md5": "d8a080037d6d2c09d738c2b0af353229",
"sha256": "783abfac663f08b14fa0ba066fe76b5b8674a535b9c40f0218eaab3f815040e3"
},
"downloads": -1,
"filename": "teragpt-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d8a080037d6d2c09d738c2b0af353229",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9,<4.0",
"size": 11025,
"upload_time": "2023-12-12T06:53:07",
"upload_time_iso_8601": "2023-12-12T06:53:07.713461Z",
"url": "https://files.pythonhosted.org/packages/d3/27/6b015b09099c1a02c5e0b0742626c935e642096ab08c138da8f2a54eb669/teragpt-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4541d635027f7f2cec638e3753ee390fd1c69fecb5227fc1ad4820c23d38b9a9",
"md5": "335dda00f472c6ba8c9ab8cb655b7f96",
"sha256": "23f94541f50e3d37579df1f6ab3884826413d80aa82588d6fb2703d3cd8d1cc3"
},
"downloads": -1,
"filename": "teragpt-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "335dda00f472c6ba8c9ab8cb655b7f96",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<4.0",
"size": 11032,
"upload_time": "2023-12-12T06:53:15",
"upload_time_iso_8601": "2023-12-12T06:53:15.044236Z",
"url": "https://files.pythonhosted.org/packages/45/41/d635027f7f2cec638e3753ee390fd1c69fecb5227fc1ad4820c23d38b9a9/teragpt-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-12 06:53:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "TeraGPT",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "zetascale",
"specs": []
},
{
"name": "local-attention",
"specs": []
},
{
"name": "torch",
"specs": []
}
],
"lcname": "teragpt"
}