tess-cloud


Nametess-cloud JSON
Version 0.5.0 PyPI version JSON
download
home_pagehttps://github.com/SSDataLab/tess-cloud
SummaryAnalyze NASA TESS data in the cloud.
upload_time2023-12-08 03:11:15
maintainer
docs_urlNone
authorGeert Barentsen
requires_python>=3.8,<4.0
licenseMIT
keywords nasa tess astronomy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            tess-cloud
==========

**Analyze the TESS open dataset in AWS S3.**

|pypi|

.. |pypi| image:: https://img.shields.io/pypi/v/tess-cloud
                :target: https://pypi.python.org/pypi/tess-cloud


`tess-cloud` is a user-friendly package which provides fast access to TESS Full-Frame Image (FFI) data in the cloud.
It builds upon `aioboto3 <https://pypi.org/project/aioboto3/>`_,
`asyncio <https://docs.python.org/3/library/asyncio.html>`_,
and `diskcache <https://pypi.org/project/diskcache/>`_
to access the `TESS data set in AWS S3 <https://registry.opendata.aws/tess/>`_
in a fast, asynchronous, and cached way.


Installation
------------

.. code-block:: bash

    python -m pip install tess-cloud


Example use
-----------

Retrieve the AWS S3 location of a TESS image:

.. code-block:: python

    >>> import tess_cloud
    >>> tess_cloud.get_s3_uri("tess2019199202929-s0014-2-3-0150-s_ffic.fits")
    "s3://stpubdata/tess/public/ffi/s0014/2019/199/2-3/tess2019199202929-s0014-2-3-0150-s_ffic.fits"


List the images of a TESS sector:

.. code-block:: python

    >>> tess_cloud.list_images(sector=5, camera=2, ccd=3)
    <TessImageList>


Read a TESS image from S3 into local memory:

.. code-block:: python

    >>> from tess_cloud import TessImage
    >>> img = TessImage("tess2019199202929-s0014-2-3-0150-s_ffic.fits")
    >>> img.read()
    <astropy.io.fits.HDUList>


Read only the header of a TESS image into local memory:

.. code-block:: python

    >>> img.read_header(ext=1)
    <astropy.io.fits.FitsHeader>


Cutout a Target Pixel File for a stationary object:

.. code-block:: python

    >>> from tess_cloud import cutout
    >>> cutout("Alpha Cen", shape=(10, 10))
    TargetPixelFile("Alpha Cen")


Cutout a Target Pixel File centered on a moving asteroid:

.. code-block:: python

    >>> from tess_cloud import cutout_asteroid
    >>> cutout_asteroid("Vesta", start="2019-04-28", stop="2019-06-28)
    TargetPixelFile("Vesta")


Documentation
-------------

Coming soon!


Similar services
----------------

`TESScut <https://mast.stsci.edu/tesscut/>`_ is an excellent API service which allows cut outs
to be obtained for stationary objects.  Tess-cloud provides an alternative implementation of this
service by leveraging the TESS public data set on AWS S3.

At this time tess-cloud is an experiment, we recommend that you keep using TESScut for now!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/SSDataLab/tess-cloud",
    "name": "tess-cloud",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<4.0",
    "maintainer_email": "",
    "keywords": "NASA, TESS, Astronomy",
    "author": "Geert Barentsen",
    "author_email": "hello@geert.io",
    "download_url": "https://files.pythonhosted.org/packages/9f/99/f24715f419c2ec270bed1147d29823a238282365397fa45f7da72e5e67d3/tess_cloud-0.5.0.tar.gz",
    "platform": null,
    "description": "tess-cloud\n==========\n\n**Analyze the TESS open dataset in AWS S3.**\n\n|pypi|\n\n.. |pypi| image:: https://img.shields.io/pypi/v/tess-cloud\n                :target: https://pypi.python.org/pypi/tess-cloud\n\n\n`tess-cloud` is a user-friendly package which provides fast access to TESS Full-Frame Image (FFI) data in the cloud.\nIt builds upon `aioboto3 <https://pypi.org/project/aioboto3/>`_,\n`asyncio <https://docs.python.org/3/library/asyncio.html>`_,\nand `diskcache <https://pypi.org/project/diskcache/>`_\nto access the `TESS data set in AWS S3 <https://registry.opendata.aws/tess/>`_\nin a fast, asynchronous, and cached way.\n\n\nInstallation\n------------\n\n.. code-block:: bash\n\n    python -m pip install tess-cloud\n\n\nExample use\n-----------\n\nRetrieve the AWS S3 location of a TESS image:\n\n.. code-block:: python\n\n    >>> import tess_cloud\n    >>> tess_cloud.get_s3_uri(\"tess2019199202929-s0014-2-3-0150-s_ffic.fits\")\n    \"s3://stpubdata/tess/public/ffi/s0014/2019/199/2-3/tess2019199202929-s0014-2-3-0150-s_ffic.fits\"\n\n\nList the images of a TESS sector:\n\n.. code-block:: python\n\n    >>> tess_cloud.list_images(sector=5, camera=2, ccd=3)\n    <TessImageList>\n\n\nRead a TESS image from S3 into local memory:\n\n.. code-block:: python\n\n    >>> from tess_cloud import TessImage\n    >>> img = TessImage(\"tess2019199202929-s0014-2-3-0150-s_ffic.fits\")\n    >>> img.read()\n    <astropy.io.fits.HDUList>\n\n\nRead only the header of a TESS image into local memory:\n\n.. code-block:: python\n\n    >>> img.read_header(ext=1)\n    <astropy.io.fits.FitsHeader>\n\n\nCutout a Target Pixel File for a stationary object:\n\n.. code-block:: python\n\n    >>> from tess_cloud import cutout\n    >>> cutout(\"Alpha Cen\", shape=(10, 10))\n    TargetPixelFile(\"Alpha Cen\")\n\n\nCutout a Target Pixel File centered on a moving asteroid:\n\n.. code-block:: python\n\n    >>> from tess_cloud import cutout_asteroid\n    >>> cutout_asteroid(\"Vesta\", start=\"2019-04-28\", stop=\"2019-06-28)\n    TargetPixelFile(\"Vesta\")\n\n\nDocumentation\n-------------\n\nComing soon!\n\n\nSimilar services\n----------------\n\n`TESScut <https://mast.stsci.edu/tesscut/>`_ is an excellent API service which allows cut outs\nto be obtained for stationary objects.  Tess-cloud provides an alternative implementation of this\nservice by leveraging the TESS public data set on AWS S3.\n\nAt this time tess-cloud is an experiment, we recommend that you keep using TESScut for now!\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Analyze NASA TESS data in the cloud.",
    "version": "0.5.0",
    "project_urls": {
        "Homepage": "https://github.com/SSDataLab/tess-cloud",
        "Repository": "https://github.com/SSDataLab/tess-cloud"
    },
    "split_keywords": [
        "nasa",
        " tess",
        " astronomy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4886278c0a397662bba7e170774570923adf383e84d037037d92da8b20ee2a17",
                "md5": "ed2fafc96a01f298eef6aad9e59a6884",
                "sha256": "de4ea1b15b63483cb255ff289e843cfaecb0ff8de40255dbbac1a817445762d3"
            },
            "downloads": -1,
            "filename": "tess_cloud-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ed2fafc96a01f298eef6aad9e59a6884",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<4.0",
            "size": 53812955,
            "upload_time": "2023-12-08T03:10:34",
            "upload_time_iso_8601": "2023-12-08T03:10:34.715045Z",
            "url": "https://files.pythonhosted.org/packages/48/86/278c0a397662bba7e170774570923adf383e84d037037d92da8b20ee2a17/tess_cloud-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9f99f24715f419c2ec270bed1147d29823a238282365397fa45f7da72e5e67d3",
                "md5": "fa88689d7513f5b5d6c528ce3fca8f4b",
                "sha256": "5d7b6b8f94aca01c89e086362a30c25e53f821abe8c98a0f0d66ccb0c2bc4c4b"
            },
            "downloads": -1,
            "filename": "tess_cloud-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "fa88689d7513f5b5d6c528ce3fca8f4b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<4.0",
            "size": 53725415,
            "upload_time": "2023-12-08T03:11:15",
            "upload_time_iso_8601": "2023-12-08T03:11:15.625273Z",
            "url": "https://files.pythonhosted.org/packages/9f/99/f24715f419c2ec270bed1147d29823a238282365397fa45f7da72e5e67d3/tess_cloud-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-08 03:11:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "SSDataLab",
    "github_project": "tess-cloud",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "tess-cloud"
}
        
Elapsed time: 3.24184s