tess-cloud
==========
**Analyze the TESS open dataset in AWS S3.**
|pypi|
.. |pypi| image:: https://img.shields.io/pypi/v/tess-cloud
:target: https://pypi.python.org/pypi/tess-cloud
`tess-cloud` is a user-friendly package which provides fast access to TESS Full-Frame Image (FFI) data in the cloud.
It builds upon `aioboto3 <https://pypi.org/project/aioboto3/>`_,
`asyncio <https://docs.python.org/3/library/asyncio.html>`_,
and `diskcache <https://pypi.org/project/diskcache/>`_
to access the `TESS data set in AWS S3 <https://registry.opendata.aws/tess/>`_
in a fast, asynchronous, and cached way.
Installation
------------
.. code-block:: bash
python -m pip install tess-cloud
Example use
-----------
Retrieve the AWS S3 location of a TESS image:
.. code-block:: python
>>> import tess_cloud
>>> tess_cloud.get_s3_uri("tess2019199202929-s0014-2-3-0150-s_ffic.fits")
"s3://stpubdata/tess/public/ffi/s0014/2019/199/2-3/tess2019199202929-s0014-2-3-0150-s_ffic.fits"
List the images of a TESS sector:
.. code-block:: python
>>> tess_cloud.list_images(sector=5, camera=2, ccd=3)
<TessImageList>
Read a TESS image from S3 into local memory:
.. code-block:: python
>>> from tess_cloud import TessImage
>>> img = TessImage("tess2019199202929-s0014-2-3-0150-s_ffic.fits")
>>> img.read()
<astropy.io.fits.HDUList>
Read only the header of a TESS image into local memory:
.. code-block:: python
>>> img.read_header(ext=1)
<astropy.io.fits.FitsHeader>
Cutout a Target Pixel File for a stationary object:
.. code-block:: python
>>> from tess_cloud import cutout
>>> cutout("Alpha Cen", shape=(10, 10))
TargetPixelFile("Alpha Cen")
Cutout a Target Pixel File centered on a moving asteroid:
.. code-block:: python
>>> from tess_cloud import cutout_asteroid
>>> cutout_asteroid("Vesta", start="2019-04-28", stop="2019-06-28)
TargetPixelFile("Vesta")
Documentation
-------------
Coming soon!
Similar services
----------------
`TESScut <https://mast.stsci.edu/tesscut/>`_ is an excellent API service which allows cut outs
to be obtained for stationary objects. Tess-cloud provides an alternative implementation of this
service by leveraging the TESS public data set on AWS S3.
At this time tess-cloud is an experiment, we recommend that you keep using TESScut for now!
Raw data
{
"_id": null,
"home_page": "https://github.com/SSDataLab/tess-cloud",
"name": "tess-cloud",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8,<4.0",
"maintainer_email": "",
"keywords": "NASA, TESS, Astronomy",
"author": "Geert Barentsen",
"author_email": "hello@geert.io",
"download_url": "https://files.pythonhosted.org/packages/9f/99/f24715f419c2ec270bed1147d29823a238282365397fa45f7da72e5e67d3/tess_cloud-0.5.0.tar.gz",
"platform": null,
"description": "tess-cloud\n==========\n\n**Analyze the TESS open dataset in AWS S3.**\n\n|pypi|\n\n.. |pypi| image:: https://img.shields.io/pypi/v/tess-cloud\n :target: https://pypi.python.org/pypi/tess-cloud\n\n\n`tess-cloud` is a user-friendly package which provides fast access to TESS Full-Frame Image (FFI) data in the cloud.\nIt builds upon `aioboto3 <https://pypi.org/project/aioboto3/>`_,\n`asyncio <https://docs.python.org/3/library/asyncio.html>`_,\nand `diskcache <https://pypi.org/project/diskcache/>`_\nto access the `TESS data set in AWS S3 <https://registry.opendata.aws/tess/>`_\nin a fast, asynchronous, and cached way.\n\n\nInstallation\n------------\n\n.. code-block:: bash\n\n python -m pip install tess-cloud\n\n\nExample use\n-----------\n\nRetrieve the AWS S3 location of a TESS image:\n\n.. code-block:: python\n\n >>> import tess_cloud\n >>> tess_cloud.get_s3_uri(\"tess2019199202929-s0014-2-3-0150-s_ffic.fits\")\n \"s3://stpubdata/tess/public/ffi/s0014/2019/199/2-3/tess2019199202929-s0014-2-3-0150-s_ffic.fits\"\n\n\nList the images of a TESS sector:\n\n.. code-block:: python\n\n >>> tess_cloud.list_images(sector=5, camera=2, ccd=3)\n <TessImageList>\n\n\nRead a TESS image from S3 into local memory:\n\n.. code-block:: python\n\n >>> from tess_cloud import TessImage\n >>> img = TessImage(\"tess2019199202929-s0014-2-3-0150-s_ffic.fits\")\n >>> img.read()\n <astropy.io.fits.HDUList>\n\n\nRead only the header of a TESS image into local memory:\n\n.. code-block:: python\n\n >>> img.read_header(ext=1)\n <astropy.io.fits.FitsHeader>\n\n\nCutout a Target Pixel File for a stationary object:\n\n.. code-block:: python\n\n >>> from tess_cloud import cutout\n >>> cutout(\"Alpha Cen\", shape=(10, 10))\n TargetPixelFile(\"Alpha Cen\")\n\n\nCutout a Target Pixel File centered on a moving asteroid:\n\n.. code-block:: python\n\n >>> from tess_cloud import cutout_asteroid\n >>> cutout_asteroid(\"Vesta\", start=\"2019-04-28\", stop=\"2019-06-28)\n TargetPixelFile(\"Vesta\")\n\n\nDocumentation\n-------------\n\nComing soon!\n\n\nSimilar services\n----------------\n\n`TESScut <https://mast.stsci.edu/tesscut/>`_ is an excellent API service which allows cut outs\nto be obtained for stationary objects. Tess-cloud provides an alternative implementation of this\nservice by leveraging the TESS public data set on AWS S3.\n\nAt this time tess-cloud is an experiment, we recommend that you keep using TESScut for now!\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Analyze NASA TESS data in the cloud.",
"version": "0.5.0",
"project_urls": {
"Homepage": "https://github.com/SSDataLab/tess-cloud",
"Repository": "https://github.com/SSDataLab/tess-cloud"
},
"split_keywords": [
"nasa",
" tess",
" astronomy"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4886278c0a397662bba7e170774570923adf383e84d037037d92da8b20ee2a17",
"md5": "ed2fafc96a01f298eef6aad9e59a6884",
"sha256": "de4ea1b15b63483cb255ff289e843cfaecb0ff8de40255dbbac1a817445762d3"
},
"downloads": -1,
"filename": "tess_cloud-0.5.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ed2fafc96a01f298eef6aad9e59a6884",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8,<4.0",
"size": 53812955,
"upload_time": "2023-12-08T03:10:34",
"upload_time_iso_8601": "2023-12-08T03:10:34.715045Z",
"url": "https://files.pythonhosted.org/packages/48/86/278c0a397662bba7e170774570923adf383e84d037037d92da8b20ee2a17/tess_cloud-0.5.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9f99f24715f419c2ec270bed1147d29823a238282365397fa45f7da72e5e67d3",
"md5": "fa88689d7513f5b5d6c528ce3fca8f4b",
"sha256": "5d7b6b8f94aca01c89e086362a30c25e53f821abe8c98a0f0d66ccb0c2bc4c4b"
},
"downloads": -1,
"filename": "tess_cloud-0.5.0.tar.gz",
"has_sig": false,
"md5_digest": "fa88689d7513f5b5d6c528ce3fca8f4b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8,<4.0",
"size": 53725415,
"upload_time": "2023-12-08T03:11:15",
"upload_time_iso_8601": "2023-12-08T03:11:15.625273Z",
"url": "https://files.pythonhosted.org/packages/9f/99/f24715f419c2ec270bed1147d29823a238282365397fa45f7da72e5e67d3/tess_cloud-0.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-08 03:11:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "SSDataLab",
"github_project": "tess-cloud",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "tess-cloud"
}