tesswcs


Nametesswcs JSON
Version 1.1.7 PyPI version JSON
download
home_pageNone
SummaryNone
upload_time2024-08-28 18:39:07
maintainerNone
docs_urlNone
authorChristina Hedges
requires_python<4.0,>=3.9
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <a href="https://github.com/tessgi/tesswcs/actions/workflows/tests.yml"><img src="https://github.com/tessgi/tesswcs/workflows/pytest/badge.svg" alt="Test status"/></a> [![Generic badge](https://img.shields.io/badge/documentation-live-blue.svg)](https://tessgi.github.io/tesswcs/)
[![PyPI version](https://badge.fury.io/py/tesswcs.svg)](https://badge.fury.io/py/tesswcs)

<p align="center">
  <img src="https://github.com/tessgi/tesswcs/blob/main/docs/images/logo.png?raw=true" width="350" alt="tesswcs logo">
</p>

# tesswcs

This package will enable you to create an [`astropy` World Coordinate System](https://docs.astropy.org/en/stable/wcs/) for any pointing of the TESS telescope. You can access both the true WCS from archival data, and predict the WCS for a given RA, Dec, and spacecraft roll.

## Installation

You can install `tesswcs` using `pip`

```
pip install --upgrade tesswcs
```

## Usage

Below is an example of how to obtain a WCS for archival data

```python
import tesswcs

wcs = tesswcs.WCS.from_archive(sector=1, camera=1, ccd=1)
```

Using `astropy`'s WCS interface you can now either work with this object, for example you can obtain the sky position of row and column positions

```python
wcs.pixel_to_world(row, column)
```

or obtain row and column positions from sky positions (using the `astropy.coordinates.SkyCoord` object).

```python
from astropy.coordinates import SkyCoord
wcs.world_to_pixel(SkyCoord.from_name("HD 209458"))
```

You can also save these objects to fits files

```python
wcs.to_fits('wcs.fits')
```

If you have a RA, Dec and roll in degrees you can also predict a WCS

```python
import tesswcs

wcs = tesswcs.WCS.predict(ra=0, dec=0, roll=0, camera=1, ccd=1)
```

You can use tesswcs to better understand what sources will be obervable on TESS pixels, or to make figures like the ones below!

![Figure showing the predicted TESS WCS](figures/tess_1_predict.png)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "tesswcs",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Christina Hedges",
    "author_email": "christina.l.hedges@nasa.gov",
    "download_url": "https://files.pythonhosted.org/packages/aa/51/47e89501beb71a129ead9e26698bc971944d59144d57fd33eb671c1ab3e6/tesswcs-1.1.7.tar.gz",
    "platform": null,
    "description": "<a href=\"https://github.com/tessgi/tesswcs/actions/workflows/tests.yml\"><img src=\"https://github.com/tessgi/tesswcs/workflows/pytest/badge.svg\" alt=\"Test status\"/></a> [![Generic badge](https://img.shields.io/badge/documentation-live-blue.svg)](https://tessgi.github.io/tesswcs/)\n[![PyPI version](https://badge.fury.io/py/tesswcs.svg)](https://badge.fury.io/py/tesswcs)\n\n<p align=\"center\">\n  <img src=\"https://github.com/tessgi/tesswcs/blob/main/docs/images/logo.png?raw=true\" width=\"350\" alt=\"tesswcs logo\">\n</p>\n\n# tesswcs\n\nThis package will enable you to create an [`astropy` World Coordinate System](https://docs.astropy.org/en/stable/wcs/) for any pointing of the TESS telescope. You can access both the true WCS from archival data, and predict the WCS for a given RA, Dec, and spacecraft roll.\n\n## Installation\n\nYou can install `tesswcs` using `pip`\n\n```\npip install --upgrade tesswcs\n```\n\n## Usage\n\nBelow is an example of how to obtain a WCS for archival data\n\n```python\nimport tesswcs\n\nwcs = tesswcs.WCS.from_archive(sector=1, camera=1, ccd=1)\n```\n\nUsing `astropy`'s WCS interface you can now either work with this object, for example you can obtain the sky position of row and column positions\n\n```python\nwcs.pixel_to_world(row, column)\n```\n\nor obtain row and column positions from sky positions (using the `astropy.coordinates.SkyCoord` object).\n\n```python\nfrom astropy.coordinates import SkyCoord\nwcs.world_to_pixel(SkyCoord.from_name(\"HD 209458\"))\n```\n\nYou can also save these objects to fits files\n\n```python\nwcs.to_fits('wcs.fits')\n```\n\nIf you have a RA, Dec and roll in degrees you can also predict a WCS\n\n```python\nimport tesswcs\n\nwcs = tesswcs.WCS.predict(ra=0, dec=0, roll=0, camera=1, ccd=1)\n```\n\nYou can use tesswcs to better understand what sources will be obervable on TESS pixels, or to make figures like the ones below!\n\n![Figure showing the predicted TESS WCS](figures/tess_1_predict.png)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": null,
    "version": "1.1.7",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bb52cf821c0f37c513e7b9595b8d5d3cd5ff78eb7ba57a90ccfb8a61f42127f9",
                "md5": "dd7d56cd29fdc3e423c20a78bbd1f54f",
                "sha256": "608aeb975f8a6ceff272b26281f4e0a6f32dac0bb9e3e3695a537fd8dd122498"
            },
            "downloads": -1,
            "filename": "tesswcs-1.1.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dd7d56cd29fdc3e423c20a78bbd1f54f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 891230,
            "upload_time": "2024-08-28T18:39:05",
            "upload_time_iso_8601": "2024-08-28T18:39:05.404101Z",
            "url": "https://files.pythonhosted.org/packages/bb/52/cf821c0f37c513e7b9595b8d5d3cd5ff78eb7ba57a90ccfb8a61f42127f9/tesswcs-1.1.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aa5147e89501beb71a129ead9e26698bc971944d59144d57fd33eb671c1ab3e6",
                "md5": "6a9a239dbf2956595655ae12b456168d",
                "sha256": "f39177643b3a914f48bb9a6590caf86827a54bd333316cd03e703654bd1fe689"
            },
            "downloads": -1,
            "filename": "tesswcs-1.1.7.tar.gz",
            "has_sig": false,
            "md5_digest": "6a9a239dbf2956595655ae12b456168d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 891442,
            "upload_time": "2024-08-28T18:39:07",
            "upload_time_iso_8601": "2024-08-28T18:39:07.300109Z",
            "url": "https://files.pythonhosted.org/packages/aa/51/47e89501beb71a129ead9e26698bc971944d59144d57fd33eb671c1ab3e6/tesswcs-1.1.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-28 18:39:07",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "tesswcs"
}
        
Elapsed time: 0.34768s