Tetraku is a collection of commonly-used models and ansatzes used by [tetragono](https://github.com/USTC-TNS/TNSP/tree/main/tetragono).
More information is available in the readme files within each directory.
There are some popular models such as [the J1 -J2 model on a square lattice](https://github.com/USTC-TNS/TNSP/tree/main/tetraku/tetraku/models/J1J2/),
[the Hubbard model on a honeycomb lattice](https://github.com/USTC-TNS/TNSP/tree/main/tetraku/tetraku/models/honeycomb_hubbard/),
and [the Rydberg model on a square lattice](https://github.com/USTC-TNS/TNSP/tree/main/tetraku/tetraku/models/rydberg/),
which can be referenced if users want to add new model.
Raw data
{
"_id": null,
"home_page": null,
"name": "tetraku",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "tensor, tensor network, tensor network state, PEPS, MPS, quantum many body system",
"author": null,
"author_email": "Hao Zhang <zh970205@mail.ustc.edu.cn>",
"download_url": null,
"platform": null,
"description": "Tetraku is a collection of commonly-used models and ansatzes used by [tetragono](https://github.com/USTC-TNS/TNSP/tree/main/tetragono).\nMore information is available in the readme files within each directory.\n\nThere are some popular models such as [the J1 -J2 model on a square lattice](https://github.com/USTC-TNS/TNSP/tree/main/tetraku/tetraku/models/J1J2/),\n[the Hubbard model on a honeycomb lattice](https://github.com/USTC-TNS/TNSP/tree/main/tetraku/tetraku/models/honeycomb_hubbard/),\nand [the Rydberg model on a square lattice](https://github.com/USTC-TNS/TNSP/tree/main/tetraku/tetraku/models/rydberg/),\nwhich can be referenced if users want to add new model.\n\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "data library used by tetragono",
"version": "0.3.17",
"project_urls": {
"Changelog": "https://github.com/USTC-TNS/TNSP/blob/main/CHANGELOG.org",
"Homepage": "https://github.com/USTC-TNS/TNSP/tree/main/tetraku",
"Issues": "https://github.com/USTC-TNS/TNSP/issues",
"Repository": "https://github.com/USTC-TNS/TNSP.git"
},
"split_keywords": [
"tensor",
" tensor network",
" tensor network state",
" peps",
" mps",
" quantum many body system"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d8863219984f606c9638692555032da6f4e82fd0e60138eb57ebc3d6c72c2c25",
"md5": "d3438e52c610625fd0dcc34aaaa331a2",
"sha256": "6346714f1ae658e22b50ffae69c10934254af535426ccd9de9f2865105270f61"
},
"downloads": -1,
"filename": "tetraku-0.3.17-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d3438e52c610625fd0dcc34aaaa331a2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 124055,
"upload_time": "2024-09-06T07:36:37",
"upload_time_iso_8601": "2024-09-06T07:36:37.212738Z",
"url": "https://files.pythonhosted.org/packages/d8/86/3219984f606c9638692555032da6f4e82fd0e60138eb57ebc3d6c72c2c25/tetraku-0.3.17-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-06 07:36:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "USTC-TNS",
"github_project": "TNSP",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "tetraku"
}