text2mapview


Nametext2mapview JSON
Version 0.2.0 PyPI version JSON
download
home_page
SummaryA python package to map your own csv files data using Atlas from NOMIC
upload_time2023-04-13 09:33:09
maintainer
docs_urlNone
author
requires_python>=3.8
license
keywords embedding visualization map text csv search keywords dynamic
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            This is a vesy simple way to map your text data using [Altas from NOMIC](https://docs.nomic.ai/index.html) using the lib `click`. 

You have to create an account to get API_KEY NOMIC. 

Atlas enables you to:

Store, update and organize multi-million point datasets of unstructured text, images and embeddings.

Visually interact with your datasets from a web browser.

Run semantic search and vector operations over your datasets.

Use Atlas to:

    - Visualize, interact, collaborate and share large datasets of text and embeddings.
    
    - Collaboratively clean, tag and label your datasets
    
    - Build high-availability apps powered by semantic search
    
    - Understand and debug the latent space of your AI model trains

# How to use
### Installation

To install the necessary dependencies, run the following command:

```bash
python -m venv mymapenv 
source mymapenv/bin/activate
pip install --upgrade pip 
pip install text2mapdata
```

## Supported Transformer Models from Hugging Face 

This project supports a variety of transformer models, including models from the Hugging Face Model Hub and sentence-transformers. Below are some examples:
    - Hugging Face Model: 'prajjwal1/bert-mini'
    - Hugging Face Model: 'Sahajtomar/french_semantic'  (french version for semantic search embedding) 
    - Sentence-Transformers Model: 'sentence-transformers/all-MiniLM-L6-v2' etc...

Please ensure that the model you choose is compatible with the project requirements and adjust the `--transformer_model_name` option accordingly.

## To map your text/csv  files

```bash
pip install -r requirements.txt
python main.py --transformer-model-name MODEL_NAME --cache_dir CACHE_DIR --batch-size BATCH_SIZE --file-path FILE_PATH
```
Remarque for the CACHE_DIR : you can setup it like ==> 

```bash
export TRANSFORMERS_CACHE=/path_to_your/transformers_cache
```

Give a fidback. 

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "text2mapview",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "Embedding, Visualization, Map, Text, CSV,  Search keywords, Dynamic",
    "author": "",
    "author_email": "Papa S\u00e9ga WADE <pasega.wade@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/c5/35/228292fe317e2313781e8cb3656767fb1f512baa16561acf0fd04b3fc930/text2mapview-0.2.0.tar.gz",
    "platform": null,
    "description": "This is a vesy simple way to map your text data using [Altas from NOMIC](https://docs.nomic.ai/index.html) using the lib `click`. \n\nYou have to create an account to get API_KEY NOMIC. \n\nAtlas enables you to:\n\nStore, update and organize multi-million point datasets of unstructured text, images and embeddings.\n\nVisually interact with your datasets from a web browser.\n\nRun semantic search and vector operations over your datasets.\n\nUse Atlas to:\n\n    - Visualize, interact, collaborate and share large datasets of text and embeddings.\n    \n    - Collaboratively clean, tag and label your datasets\n    \n    - Build high-availability apps powered by semantic search\n    \n    - Understand and debug the latent space of your AI model trains\n\n# How to use\n### Installation\n\nTo install the necessary dependencies, run the following command:\n\n```bash\npython -m venv mymapenv \nsource mymapenv/bin/activate\npip install --upgrade pip \npip install text2mapdata\n```\n\n## Supported Transformer Models from Hugging Face \n\nThis project supports a variety of transformer models, including models from the Hugging Face Model Hub and sentence-transformers. Below are some examples:\n    - Hugging Face Model: 'prajjwal1/bert-mini'\n    - Hugging Face Model: 'Sahajtomar/french_semantic'  (french version for semantic search embedding) \n    - Sentence-Transformers Model: 'sentence-transformers/all-MiniLM-L6-v2' etc...\n\nPlease ensure that the model you choose is compatible with the project requirements and adjust the `--transformer_model_name` option accordingly.\n\n## To map your text/csv  files\n\n```bash\npip install -r requirements.txt\npython main.py --transformer-model-name MODEL_NAME --cache_dir CACHE_DIR --batch-size BATCH_SIZE --file-path FILE_PATH\n```\nRemarque for the CACHE_DIR : you can setup it like ==> \n\n```bash\nexport TRANSFORMERS_CACHE=/path_to_your/transformers_cache\n```\n\nGive a fidback. \n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A python package to map your own csv files data using Atlas from NOMIC",
    "version": "0.2.0",
    "split_keywords": [
        "embedding",
        " visualization",
        " map",
        " text",
        " csv",
        "  search keywords",
        " dynamic"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7adcc011eebc19597d3fddf302855ed231251d04a7727c799eba5f2ed969247c",
                "md5": "efe2c4a139c208f69fdaf9fa808a4c95",
                "sha256": "100eb1c3955f0bff4a1860a9baca1f90636686453bd948d05f155e8d80de95ec"
            },
            "downloads": -1,
            "filename": "text2mapview-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "efe2c4a139c208f69fdaf9fa808a4c95",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 5571,
            "upload_time": "2023-04-13T09:33:07",
            "upload_time_iso_8601": "2023-04-13T09:33:07.238709Z",
            "url": "https://files.pythonhosted.org/packages/7a/dc/c011eebc19597d3fddf302855ed231251d04a7727c799eba5f2ed969247c/text2mapview-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c535228292fe317e2313781e8cb3656767fb1f512baa16561acf0fd04b3fc930",
                "md5": "938cf77fca57a83e21fa55afb827d7d4",
                "sha256": "dd37c4c2085d8c15f9d42d464152c12ce6a9edaee69488046d93d101fa1ab6c9"
            },
            "downloads": -1,
            "filename": "text2mapview-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "938cf77fca57a83e21fa55afb827d7d4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 4673,
            "upload_time": "2023-04-13T09:33:09",
            "upload_time_iso_8601": "2023-04-13T09:33:09.003482Z",
            "url": "https://files.pythonhosted.org/packages/c5/35/228292fe317e2313781e8cb3656767fb1f512baa16561acf0fd04b3fc930/text2mapview-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-13 09:33:09",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "text2mapview"
}
        
Elapsed time: 0.06109s