text2mapviewer


Nametext2mapviewer JSON
Version 0.2.2 PyPI version JSON
download
home_page
SummaryA python package to map your own csv files data using Atlas from NOMIC
upload_time2023-04-14 12:12:07
maintainer
docs_urlNone
author
requires_python>=3.7
license
keywords embedding visualization map text csv search keywords dynamic
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            This is a vesy simple way to map your text data using [Altas from NOMIC](https://docs.nomic.ai/index.html) using the lib `click`.

You have to create an account to get API_KEY NOMIC. 

<< Atlas enables you to:
* Store, update and organize multi-million point datasets of unstructured text, images and embeddings.
* Visually interact with your datasets from a web browser.
* Run semantic search and vector operations over your datasets.
Use Atlas to:

    - Visualize, interact, collaborate and share large datasets of text and embeddings.
    - Collaboratively clean, tag and label your datasets
    - Build high-availability apps powered by semantic search
    - Understand and debug the latent space of your AI model trains  >>


# How to use
### Installation

To install the necessary dependencies, run the following command:

```bash
python -m venv mymapenv 
source mymapenv/bin/activate
pip install --upgrade pip 
pip install text2mapviewer
```

### Login NOMIC server

Login/create your Nomic account:

```bash
nomic login
```
If you have already your account : 

```bash
nomic login [YOUR_API_TOKEN_NOMIC_HERE] 
```
## Examples : 
#### from NOMIC and with lib text2mapviewer 
```python
from text2mapviewer.examples.map_embedding import project

# Use the projet from the lib text2mapviewer 
print(project) 
```

#### With the lib `click` after clone this ripo

```python
python scr/text2mapviewer/examples/map_embedding_click.py --num_embeddings 10000 --embedding_dim 256
```

#### [ The Animation Ouput](https://atlas.nomic.ai/map/0b4c0459-98f2-4aab-8d47-875765832049/54017477-907d-46e8-8d56-dddf7ab7fcfc)




## Supported Transformer Models from Hugging Face 

This project supports a variety of transformer models, including models from the Hugging Face Model Hub and sentence-transformers. Below are some examples:
    - Hugging Face Model: 'prajjwal1/bert-mini'
    - Hugging Face Model: 'Sahajtomar/french_semantic'  (french version for semantic search embedding) 
    - Sentence-Transformers Model: 'sentence-transformers/all-MiniLM-L6-v2' etc...

Please ensure that the model you choose is compatible with the project requirements and adjust the `--transformer_model_name` option accordingly.

## To map your text/csv  files

```bash
pip install -r requirements.txt
python main.py --transformer-model-name MODEL_NAME --cache_dir CACHE_DIR --batch-size BATCH_SIZE --file-path FILE_PATH
```
NOTE: for the CACHE_DIR : you can setup it like ==> 

```bash
export TRANSFORMERS_CACHE=/path_to_your/transformers_cache
```

Give a fidback. 

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "text2mapviewer",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "Embedding, Visualization, Map, Text, CSV,  Search keywords, Dynamic",
    "author": "",
    "author_email": "Papa S\u00e9ga WADE <pasega.wade@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/a4/b9/5899e4cc4db302f6f2f37d78694094753cfa212e136d86f18389403026c3/text2mapviewer-0.2.2.tar.gz",
    "platform": null,
    "description": "This is a vesy simple way to map your text data using [Altas from NOMIC](https://docs.nomic.ai/index.html) using the lib `click`.\n\nYou have to create an account to get API_KEY NOMIC. \n\n<< Atlas enables you to:\n* Store, update and organize multi-million point datasets of unstructured text, images and embeddings.\n* Visually interact with your datasets from a web browser.\n* Run semantic search and vector operations over your datasets.\nUse Atlas to:\n\n    - Visualize, interact, collaborate and share large datasets of text and embeddings.\n    - Collaboratively clean, tag and label your datasets\n    - Build high-availability apps powered by semantic search\n    - Understand and debug the latent space of your AI model trains  >>\n\n\n# How to use\n### Installation\n\nTo install the necessary dependencies, run the following command:\n\n```bash\npython -m venv mymapenv \nsource mymapenv/bin/activate\npip install --upgrade pip \npip install text2mapviewer\n```\n\n### Login NOMIC server\n\nLogin/create your Nomic account:\n\n```bash\nnomic login\n```\nIf you have already your account : \n\n```bash\nnomic login [YOUR_API_TOKEN_NOMIC_HERE] \n```\n## Examples : \n#### from NOMIC and with lib text2mapviewer \n```python\nfrom text2mapviewer.examples.map_embedding import project\n\n# Use the projet from the lib text2mapviewer \nprint(project) \n```\n\n#### With the lib `click` after clone this ripo\n\n```python\npython scr/text2mapviewer/examples/map_embedding_click.py --num_embeddings 10000 --embedding_dim 256\n```\n\n#### [ The Animation Ouput](https://atlas.nomic.ai/map/0b4c0459-98f2-4aab-8d47-875765832049/54017477-907d-46e8-8d56-dddf7ab7fcfc)\n\n\n\n\n## Supported Transformer Models from Hugging Face \n\nThis project supports a variety of transformer models, including models from the Hugging Face Model Hub and sentence-transformers. Below are some examples:\n    - Hugging Face Model: 'prajjwal1/bert-mini'\n    - Hugging Face Model: 'Sahajtomar/french_semantic'  (french version for semantic search embedding) \n    - Sentence-Transformers Model: 'sentence-transformers/all-MiniLM-L6-v2' etc...\n\nPlease ensure that the model you choose is compatible with the project requirements and adjust the `--transformer_model_name` option accordingly.\n\n## To map your text/csv  files\n\n```bash\npip install -r requirements.txt\npython main.py --transformer-model-name MODEL_NAME --cache_dir CACHE_DIR --batch-size BATCH_SIZE --file-path FILE_PATH\n```\nNOTE: for the CACHE_DIR : you can setup it like ==> \n\n```bash\nexport TRANSFORMERS_CACHE=/path_to_your/transformers_cache\n```\n\nGive a fidback. \n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A python package to map your own csv files data using Atlas from NOMIC",
    "version": "0.2.2",
    "split_keywords": [
        "embedding",
        " visualization",
        " map",
        " text",
        " csv",
        "  search keywords",
        " dynamic"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c13ade12f0db582b3c75ae7815e67c170170b74339e8bcc4eefe2a0656014264",
                "md5": "ff4a4d82a9310f1937cd5db233bd1d4b",
                "sha256": "07239f079beeaf95d9e6697a98322319fa02b075db105a9f2f02a2595ae66f1d"
            },
            "downloads": -1,
            "filename": "text2mapviewer-0.2.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ff4a4d82a9310f1937cd5db233bd1d4b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 8165,
            "upload_time": "2023-04-14T12:12:04",
            "upload_time_iso_8601": "2023-04-14T12:12:04.162303Z",
            "url": "https://files.pythonhosted.org/packages/c1/3a/de12f0db582b3c75ae7815e67c170170b74339e8bcc4eefe2a0656014264/text2mapviewer-0.2.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a4b95899e4cc4db302f6f2f37d78694094753cfa212e136d86f18389403026c3",
                "md5": "75ecf4098480868d7f19e3e4ffe3060d",
                "sha256": "b3a4b671b947fba3193439ef775f748bace395f384adbcc088e8786e57fa87f1"
            },
            "downloads": -1,
            "filename": "text2mapviewer-0.2.2.tar.gz",
            "has_sig": false,
            "md5_digest": "75ecf4098480868d7f19e3e4ffe3060d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 9206,
            "upload_time": "2023-04-14T12:12:07",
            "upload_time_iso_8601": "2023-04-14T12:12:07.438656Z",
            "url": "https://files.pythonhosted.org/packages/a4/b9/5899e4cc4db302f6f2f37d78694094753cfa212e136d86f18389403026c3/text2mapviewer-0.2.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-14 12:12:07",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "text2mapviewer"
}
        
Elapsed time: 0.06608s