text2topicloss


Nametext2topicloss JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummaryText2topic loss for bi-encoder models
upload_time2024-06-19 13:22:19
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseNone
keywords text2topic nlp topic modeling bert bertopic
VCS
bugtrack_url
requirements build
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Text2Topic

Implementation of bi-encoder Text2Topic architecture describe in *Text2Topic: Multi-Label Text Classification System for Efficient Topic Detection in User Generated Content with Zero-Shot Capabilities*

**Read the paper & the original repository for details about the algorithm !**

- PAPER : https://aclanthology.org/2023.emnlp-industry.10/

![Text2topic schema](https://raw.githubusercontent.com/azaismarc/text2topic/master/text2topic.png)

## Installation

```bash
pip install text2topicloss
```

or

```bash
git clone
python -m pip install .
```
## Citations

**I'm not the author of the original paper**, so if you use this library, please cite the original paper :

```bibtex
@inproceedings{wang-etal-2023-text2topic,
    title = "{T}ext2{T}opic: Multi-Label Text Classification System for Efficient Topic Detection in User Generated Content with Zero-Shot Capabilities",
    author = "Wang, Fengjun  and
      Beladev, Moran  and
      Kleinfeld, Ofri  and
      Frayerman, Elina  and
      Shachar, Tal  and
      Fainman, Eran  and
      Lastmann Assaraf, Karen  and
      Mizrachi, Sarai  and
      Wang, Benjamin",
    editor = "Wang, Mingxuan  and
      Zitouni, Imed",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.emnlp-industry.10",
    doi = "10.18653/v1/2023.emnlp-industry.10",
    pages = "93--103",
}
```

## License

GNU General Public License v3.0

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "text2topicloss",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "text2topic, nlp, topic modeling, BERT, BERTopic",
    "author": null,
    "author_email": "Marc-Alexis Aza\u00efs <azaismarc.pro@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/c6/d5/131143d064a55dba69bf29ad720e9ee4e8b98b9a304991af3bb1ff113798/text2topicloss-1.0.0.tar.gz",
    "platform": null,
    "description": "# Text2Topic\n\nImplementation of bi-encoder Text2Topic architecture describe in *Text2Topic: Multi-Label Text Classification System for Efficient Topic Detection in User Generated Content with Zero-Shot Capabilities*\n\n**Read the paper & the original repository for details about the algorithm !**\n\n- PAPER : https://aclanthology.org/2023.emnlp-industry.10/\n\n![Text2topic schema](https://raw.githubusercontent.com/azaismarc/text2topic/master/text2topic.png)\n\n## Installation\n\n```bash\npip install text2topicloss\n```\n\nor\n\n```bash\ngit clone\npython -m pip install .\n```\n## Citations\n\n**I'm not the author of the original paper**, so if you use this library, please cite the original paper :\n\n```bibtex\n@inproceedings{wang-etal-2023-text2topic,\n    title = \"{T}ext2{T}opic: Multi-Label Text Classification System for Efficient Topic Detection in User Generated Content with Zero-Shot Capabilities\",\n    author = \"Wang, Fengjun  and\n      Beladev, Moran  and\n      Kleinfeld, Ofri  and\n      Frayerman, Elina  and\n      Shachar, Tal  and\n      Fainman, Eran  and\n      Lastmann Assaraf, Karen  and\n      Mizrachi, Sarai  and\n      Wang, Benjamin\",\n    editor = \"Wang, Mingxuan  and\n      Zitouni, Imed\",\n    booktitle = \"Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track\",\n    month = dec,\n    year = \"2023\",\n    address = \"Singapore\",\n    publisher = \"Association for Computational Linguistics\",\n    url = \"https://aclanthology.org/2023.emnlp-industry.10\",\n    doi = \"10.18653/v1/2023.emnlp-industry.10\",\n    pages = \"93--103\",\n}\n```\n\n## License\n\nGNU General Public License v3.0\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Text2topic loss for bi-encoder models",
    "version": "1.0.0",
    "project_urls": {
        "Paper": "https://aclanthology.org/2023.emnlp-industry.10/",
        "Repository": "https://github.com/azaismarc/text2topic"
    },
    "split_keywords": [
        "text2topic",
        " nlp",
        " topic modeling",
        " bert",
        " bertopic"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9e42cc1bda6de73ecfdd5fdf0ffd91f7d3c86aa4805082515c538820a63f17c7",
                "md5": "8df3f6cba2d966c75df21079d24ded5c",
                "sha256": "bd70f4c377cde2877dbc633e89512343a139b6d3788392115b7f0328e0c48897"
            },
            "downloads": -1,
            "filename": "text2topicloss-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8df3f6cba2d966c75df21079d24ded5c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 15701,
            "upload_time": "2024-06-19T13:22:17",
            "upload_time_iso_8601": "2024-06-19T13:22:17.184684Z",
            "url": "https://files.pythonhosted.org/packages/9e/42/cc1bda6de73ecfdd5fdf0ffd91f7d3c86aa4805082515c538820a63f17c7/text2topicloss-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c6d5131143d064a55dba69bf29ad720e9ee4e8b98b9a304991af3bb1ff113798",
                "md5": "3f336a3724be83cd141e61a0418e3873",
                "sha256": "35a1767340306f975bd51fd8d9ea85794d4c8993f3c41b9adf97541d63bdc5c8"
            },
            "downloads": -1,
            "filename": "text2topicloss-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "3f336a3724be83cd141e61a0418e3873",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 15469,
            "upload_time": "2024-06-19T13:22:19",
            "upload_time_iso_8601": "2024-06-19T13:22:19.796895Z",
            "url": "https://files.pythonhosted.org/packages/c6/d5/131143d064a55dba69bf29ad720e9ee4e8b98b9a304991af3bb1ff113798/text2topicloss-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-19 13:22:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "azaismarc",
    "github_project": "text2topic",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "build",
            "specs": []
        }
    ],
    "lcname": "text2topicloss"
}
        
Elapsed time: 4.31642s