# Text2Topic
Implementation of bi-encoder Text2Topic architecture describe in *Text2Topic: Multi-Label Text Classification System for Efficient Topic Detection in User Generated Content with Zero-Shot Capabilities*
**Read the paper & the original repository for details about the algorithm !**
- PAPER : https://aclanthology.org/2023.emnlp-industry.10/
![Text2topic schema](https://raw.githubusercontent.com/azaismarc/text2topic/master/text2topic.png)
## Installation
```bash
pip install text2topicloss
```
or
```bash
git clone
python -m pip install .
```
## Citations
**I'm not the author of the original paper**, so if you use this library, please cite the original paper :
```bibtex
@inproceedings{wang-etal-2023-text2topic,
title = "{T}ext2{T}opic: Multi-Label Text Classification System for Efficient Topic Detection in User Generated Content with Zero-Shot Capabilities",
author = "Wang, Fengjun and
Beladev, Moran and
Kleinfeld, Ofri and
Frayerman, Elina and
Shachar, Tal and
Fainman, Eran and
Lastmann Assaraf, Karen and
Mizrachi, Sarai and
Wang, Benjamin",
editor = "Wang, Mingxuan and
Zitouni, Imed",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-industry.10",
doi = "10.18653/v1/2023.emnlp-industry.10",
pages = "93--103",
}
```
## License
GNU General Public License v3.0
Raw data
{
"_id": null,
"home_page": null,
"name": "text2topicloss",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "text2topic, nlp, topic modeling, BERT, BERTopic",
"author": null,
"author_email": "Marc-Alexis Aza\u00efs <azaismarc.pro@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/c6/d5/131143d064a55dba69bf29ad720e9ee4e8b98b9a304991af3bb1ff113798/text2topicloss-1.0.0.tar.gz",
"platform": null,
"description": "# Text2Topic\n\nImplementation of bi-encoder Text2Topic architecture describe in *Text2Topic: Multi-Label Text Classification System for Efficient Topic Detection in User Generated Content with Zero-Shot Capabilities*\n\n**Read the paper & the original repository for details about the algorithm !**\n\n- PAPER : https://aclanthology.org/2023.emnlp-industry.10/\n\n![Text2topic schema](https://raw.githubusercontent.com/azaismarc/text2topic/master/text2topic.png)\n\n## Installation\n\n```bash\npip install text2topicloss\n```\n\nor\n\n```bash\ngit clone\npython -m pip install .\n```\n## Citations\n\n**I'm not the author of the original paper**, so if you use this library, please cite the original paper :\n\n```bibtex\n@inproceedings{wang-etal-2023-text2topic,\n title = \"{T}ext2{T}opic: Multi-Label Text Classification System for Efficient Topic Detection in User Generated Content with Zero-Shot Capabilities\",\n author = \"Wang, Fengjun and\n Beladev, Moran and\n Kleinfeld, Ofri and\n Frayerman, Elina and\n Shachar, Tal and\n Fainman, Eran and\n Lastmann Assaraf, Karen and\n Mizrachi, Sarai and\n Wang, Benjamin\",\n editor = \"Wang, Mingxuan and\n Zitouni, Imed\",\n booktitle = \"Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track\",\n month = dec,\n year = \"2023\",\n address = \"Singapore\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2023.emnlp-industry.10\",\n doi = \"10.18653/v1/2023.emnlp-industry.10\",\n pages = \"93--103\",\n}\n```\n\n## License\n\nGNU General Public License v3.0\n",
"bugtrack_url": null,
"license": null,
"summary": "Text2topic loss for bi-encoder models",
"version": "1.0.0",
"project_urls": {
"Paper": "https://aclanthology.org/2023.emnlp-industry.10/",
"Repository": "https://github.com/azaismarc/text2topic"
},
"split_keywords": [
"text2topic",
" nlp",
" topic modeling",
" bert",
" bertopic"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9e42cc1bda6de73ecfdd5fdf0ffd91f7d3c86aa4805082515c538820a63f17c7",
"md5": "8df3f6cba2d966c75df21079d24ded5c",
"sha256": "bd70f4c377cde2877dbc633e89512343a139b6d3788392115b7f0328e0c48897"
},
"downloads": -1,
"filename": "text2topicloss-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8df3f6cba2d966c75df21079d24ded5c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 15701,
"upload_time": "2024-06-19T13:22:17",
"upload_time_iso_8601": "2024-06-19T13:22:17.184684Z",
"url": "https://files.pythonhosted.org/packages/9e/42/cc1bda6de73ecfdd5fdf0ffd91f7d3c86aa4805082515c538820a63f17c7/text2topicloss-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c6d5131143d064a55dba69bf29ad720e9ee4e8b98b9a304991af3bb1ff113798",
"md5": "3f336a3724be83cd141e61a0418e3873",
"sha256": "35a1767340306f975bd51fd8d9ea85794d4c8993f3c41b9adf97541d63bdc5c8"
},
"downloads": -1,
"filename": "text2topicloss-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "3f336a3724be83cd141e61a0418e3873",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 15469,
"upload_time": "2024-06-19T13:22:19",
"upload_time_iso_8601": "2024-06-19T13:22:19.796895Z",
"url": "https://files.pythonhosted.org/packages/c6/d5/131143d064a55dba69bf29ad720e9ee4e8b98b9a304991af3bb1ff113798/text2topicloss-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-19 13:22:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "azaismarc",
"github_project": "text2topic",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "build",
"specs": []
}
],
"lcname": "text2topicloss"
}