# TEXTA Bert Tagger


## Installation
##### Using built package
`pip install texta-bert-tagger`
##### Using Git
`pip install git+https://git.texta.ee/texta/texta-bert-tagger-python.git`
### Testing
`python -m pytest -v tests`
### Documentation
Documentation for version 1.* is available [here](https://git.texta.ee/texta/texta-bert-tagger-python/-/wikis/Documentation-v1.*).
Documentation for version 2.* is available [here](https://git.texta.ee/texta/texta-bert-tagger-python/-/wikis/Documentation-v2.*).
Documentation for version 3.* is available [here](https://git.texta.ee/texta/texta-bert-tagger-python/-/wikis/Documentation-v3.*).
## Usage (for versions >=3.*.*)
### Fine-tune BERT model
```python
from texta_bert_tagger.tagger import BertTagger
bert_tagger = BertTagger()
data_sample = {"good": ["It was a nice day.", "All was well."], "bad": ["It was horrible.", "What a disaster."]}
# Train a model
# pos_label - used in metrics (precision, recall, f1-score etc) calculations as true label
bert_tagger.train(data_sample, pos_label="bad", n_epochs=2)
# Predict
result = bert_tagger.tag_text("How awful!")
print(result)
```
#### Output
```
[{"prediction": "bad", "probability": 0.55200404, "attributions": []}]
```
Raw data
{
"_id": null,
"home_page": "https://git.texta.ee/texta/texta-bert-tagger-python",
"name": "texta-bert-tagger",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "TEXTA",
"author_email": "info@texta.ee",
"download_url": "https://files.pythonhosted.org/packages/bc/42/f31bf0b0f6b2b6ebfebb0a91dd8be54156dd908013658d817848d4d86bd1/texta-bert-tagger-3.0.1.tar.gz",
"platform": null,
"description": "# TEXTA Bert Tagger\n\n\n\n\n## Installation\n\n##### Using built package\n`pip install texta-bert-tagger`\n\n##### Using Git\n`pip install git+https://git.texta.ee/texta/texta-bert-tagger-python.git`\n\n### Testing\n\n`python -m pytest -v tests`\n\n### Documentation\n\nDocumentation for version 1.* is available [here](https://git.texta.ee/texta/texta-bert-tagger-python/-/wikis/Documentation-v1.*).\n\nDocumentation for version 2.* is available [here](https://git.texta.ee/texta/texta-bert-tagger-python/-/wikis/Documentation-v2.*).\n\nDocumentation for version 3.* is available [here](https://git.texta.ee/texta/texta-bert-tagger-python/-/wikis/Documentation-v3.*).\n\n## Usage (for versions >=3.*.*)\n\n### Fine-tune BERT model\n\n```python\nfrom texta_bert_tagger.tagger import BertTagger\nbert_tagger = BertTagger()\n\ndata_sample = {\"good\": [\"It was a nice day.\", \"All was well.\"], \"bad\": [\"It was horrible.\", \"What a disaster.\"]}\n\n# Train a model\n\n# pos_label - used in metrics (precision, recall, f1-score etc) calculations as true label\nbert_tagger.train(data_sample, pos_label=\"bad\", n_epochs=2)\n\n# Predict\nresult = bert_tagger.tag_text(\"How awful!\")\nprint(result)\n```\n\n#### Output\n\n```\n[{\"prediction\": \"bad\", \"probability\": 0.55200404, \"attributions\": []}]\n```\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "texta-bert-tagger",
"version": "3.0.1",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "bc42f31bf0b0f6b2b6ebfebb0a91dd8be54156dd908013658d817848d4d86bd1",
"md5": "800f5ffa75a5232d84ab78a5c080f25e",
"sha256": "9f69f687edbf40a3401b3c0372b98ef93fd1ad4763ca263903aae60688d3f80c"
},
"downloads": -1,
"filename": "texta-bert-tagger-3.0.1.tar.gz",
"has_sig": false,
"md5_digest": "800f5ffa75a5232d84ab78a5c080f25e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 30515,
"upload_time": "2023-04-25T13:52:46",
"upload_time_iso_8601": "2023-04-25T13:52:46.436248Z",
"url": "https://files.pythonhosted.org/packages/bc/42/f31bf0b0f6b2b6ebfebb0a91dd8be54156dd908013658d817848d4d86bd1/texta-bert-tagger-3.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-25 13:52:46",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "texta-bert-tagger"
}