Name | textforge JSON |
Version |
0.1.2
JSON |
| download |
home_page | None |
Summary | Automated Synthetic Data Generation, Distillation, Quantization and Deployment Pipeline. |
upload_time | 2025-03-04 02:26:06 |
maintainer | None |
docs_url | None |
author | ameen-91 |
requires_python | <4.0,>=3.11 |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Infero



[](https://github.com/norsulabs/textforge/actions/workflows/ci.yaml)

## Overview
TextForge automates model distillation, training, quantization, and deployment for text classification. It simplifies synthetic data generation, model optimization using ONNX runtime, and FastAPI serving.
### Features
- Automated synthetic data generation
- Transformer model training
- ONNX conversion with 8-bit quantization
- Automated model API serving with FastAPI
<!-- - Customizable hyperparameter control -->
### Installation
```bash
pip install textforge
```
## Usage
```python
import pandas as pd
from textforge.pipeline import Pipeline, PipelineConfig
pipeline_config = PipelineConfig(
api_key=api_key,
labels=['business','education','entertainment','sports','technology'],
query="Classify based on headlines",
save_steps=200,
eval_steps=200,
epochs=10
)
df = pd.read_csv('data.csv')
pipeline = Pipeline(pipeline_config)
pipeline.run(data=df, save=True, serve=True)
```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
Raw data
{
"_id": null,
"home_page": null,
"name": "textforge",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.11",
"maintainer_email": null,
"keywords": null,
"author": "ameen-91",
"author_email": "mohammedameen9011@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/72/bb/fd9e8a6aaeab40d08eccdb443d2157bf3b00b7c0b3bc99221bacc0c77b83/textforge-0.1.2.tar.gz",
"platform": null,
"description": "# Infero\n\n\n\n\n[](https://github.com/norsulabs/textforge/actions/workflows/ci.yaml)\n\n\n## Overview\n\nTextForge automates model distillation, training, quantization, and deployment for text classification. It simplifies synthetic data generation, model optimization using ONNX runtime, and FastAPI serving.\n\n### Features\n\n- Automated synthetic data generation\n- Transformer model training\n- ONNX conversion with 8-bit quantization\n- Automated model API serving with FastAPI\n<!-- - Customizable hyperparameter control -->\n\n### Installation\n\n```bash\npip install textforge\n```\n\n## Usage\n\n```python\nimport pandas as pd\nfrom textforge.pipeline import Pipeline, PipelineConfig\n\npipeline_config = PipelineConfig(\n api_key=api_key,\n labels=['business','education','entertainment','sports','technology'],\n query=\"Classify based on headlines\",\n save_steps=200,\n eval_steps=200,\n epochs=10\n)\n\ndf = pd.read_csv('data.csv')\n\npipeline = Pipeline(pipeline_config)\n\npipeline.run(data=df, save=True, serve=True)\n```\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Automated Synthetic Data Generation, Distillation, Quantization and Deployment Pipeline.",
"version": "0.1.2",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "f677bb181ac26788986fa52c1bbcf5c5b2ff10ca736dfd11e059ee191c77d763",
"md5": "7dbc12e783c2e78320dc8ab45aa36ae7",
"sha256": "4d6b145e9b5cd60305381c2c83de9d31857810cc26ea99e7a8dcd3f0a770ca2c"
},
"downloads": -1,
"filename": "textforge-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7dbc12e783c2e78320dc8ab45aa36ae7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.11",
"size": 17170,
"upload_time": "2025-03-04T02:26:04",
"upload_time_iso_8601": "2025-03-04T02:26:04.133612Z",
"url": "https://files.pythonhosted.org/packages/f6/77/bb181ac26788986fa52c1bbcf5c5b2ff10ca736dfd11e059ee191c77d763/textforge-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "72bbfd9e8a6aaeab40d08eccdb443d2157bf3b00b7c0b3bc99221bacc0c77b83",
"md5": "f40c3291a476bc4793e915af67805db0",
"sha256": "76d56ce201c2afbaf4f50784944423dd2593cb08cd9287edba41980984df5841"
},
"downloads": -1,
"filename": "textforge-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "f40c3291a476bc4793e915af67805db0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.11",
"size": 14128,
"upload_time": "2025-03-04T02:26:06",
"upload_time_iso_8601": "2025-03-04T02:26:06.040305Z",
"url": "https://files.pythonhosted.org/packages/72/bb/fd9e8a6aaeab40d08eccdb443d2157bf3b00b7c0b3bc99221bacc0c77b83/textforge-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-03-04 02:26:06",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "textforge"
}