=====================================
Textnets: text analysis with networks
=====================================
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/jboynyc/textnets-binder/trunk?filepath=Tutorial.ipynb
:alt: Launch on Binder
.. image:: https://github.com/jboynyc/textnets/actions/workflows/ci.yml/badge.svg
:target: https://github.com/jboynyc/textnets/actions/workflows/ci.yml
:alt: CI status
.. image:: https://readthedocs.org/projects/textnets/badge/?version=stable
:target: https://textnets.readthedocs.io/en/stable/?badge=stable
:alt: Documentation Status
.. image:: https://anaconda.org/conda-forge/textnets/badges/version.svg
:target: https://anaconda.org/conda-forge/textnets
:alt: Install with conda
.. image:: https://joss.theoj.org/papers/10.21105/joss.02594/status.svg
:target: https://doi.org/10.21105/joss.02594
:alt: Published in Journal of Open Source Software
**textnets** represents collections of texts as networks of documents and
words. This provides novel possibilities for the visualization and analysis of
texts.
.. figure:: https://textnets.readthedocs.io/en/dev/_static/impeachment-statements.svg
:alt: Bipartite network graph
Network of U.S. Senators and words used in their official statements
following the acquittal vote in the 2020 Senate impeachment trial (`source
<https://www.jboy.space/blog/enemies-foreign-and-partisan.html>`_).
**textnets** is free software under the terms of the GNU General Public License
v3.
The ideas underlying **textnets** are presented in this paper:
Christopher A. Bail, "`Combining natural language processing and network
analysis to examine how advocacy organizations stimulate conversation on social
media`__," *Proceedings of the National Academy of Sciences of the United States
of America* 113, no. 42 (2016), 11823–11828, doi:10.1073/pnas.1607151113.
__ https://doi.org/10.1073/pnas.1607151113
Initially begun as a Python implementation of `Chris Bail's textnets package
for R`_, **textnets** now comprises several unique features for term extraction
and weighing, visualization, and analysis.
.. _`Chris Bail's textnets package for R`: https://github.com/cbail/textnets/
Features
--------
**textnets** builds on `spaCy`_, a state-of-the-art library for
natural-language processing, and `igraph`_ for network analysis. It uses the
`Leiden algorithm`_ for community detection, which is able to perform community
detection on the bipartite (word–group) network.
.. _`igraph`: http://igraph.org/python/
.. _`Leiden algorithm`: https://doi.org/10.1038/s41598-019-41695-z
.. _`spaCy`: https://spacy.io/
**textnets** is installable using the ``conda``, ``pip`` and ``nix`` package
managers. It requires Python 3.8 or higher.
**textnets** integrates seamlessly with Python's excellent `scientific stack`_.
That means that you can use **textnets** to analyze and visualize your data in
Jupyter notebooks!
.. _`scientific stack`: https://scientific-python.org
Read `the documentation <https://textnets.readthedocs.io>`_ to learn more about
the package's features.
Citation
--------
Using **textnets** in a scholarly publication? Please cite this paper:
.. code-block:: bibtex
@article{Boy2020,
author = {John D. Boy},
title = {textnets},
subtitle = {A {P}ython Package for Text Analysis with Networks},
journal = {Journal of Open Source Software},
volume = {5},
number = {54},
pages = {2594},
year = {2020},
doi = {10.21105/joss.02594},
}
Learn More
----------
================== =============================================
**Documentation** https://textnets.readthedocs.io/
**Repository** https://github.com/jboynyc/textnets
**Issues & Ideas** https://github.com/jboynyc/textnets/issues
**Conda-Forge** https://anaconda.org/conda-forge/textnets
**PyPI** https://pypi.org/project/textnets/
**FOSDEM ’22** https://fosdem.org/2022/schedule/event/open_research_textnets/
**DOI** `10.21105/joss.02594 <https://doi.org/10.21105/joss.02594>`_
**Archive** `10.5281/zenodo.3866676 <https://doi.org/10.5281/zenodo.3866676>`_
================== =============================================
.. image:: https://textnets.readthedocs.io/en/dev/_static/textnets-logo.svg
:alt: textnets logo
:target: https://textnets.readthedocs.io
:align: center
:width: 140
Raw data
{
"_id": null,
"home_page": "https://textnets.readthedocs.io",
"name": "textnets",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<3.13",
"maintainer_email": "",
"keywords": "computational social science,network analysis,nlp,text analysis,visualization",
"author": "John D. Boy",
"author_email": "jboy@bius.moe",
"download_url": "https://files.pythonhosted.org/packages/c0/eb/8d62cf73ec6a37c95c046bcc20d80771856610ae2132b4f23760b5329e05/textnets-0.9.4.tar.gz",
"platform": null,
"description": "=====================================\nTextnets: text analysis with networks\n=====================================\n\n.. image:: https://mybinder.org/badge_logo.svg\n :target: https://mybinder.org/v2/gh/jboynyc/textnets-binder/trunk?filepath=Tutorial.ipynb\n :alt: Launch on Binder\n\n.. image:: https://github.com/jboynyc/textnets/actions/workflows/ci.yml/badge.svg\n :target: https://github.com/jboynyc/textnets/actions/workflows/ci.yml\n :alt: CI status\n\n.. image:: https://readthedocs.org/projects/textnets/badge/?version=stable\n :target: https://textnets.readthedocs.io/en/stable/?badge=stable\n :alt: Documentation Status\n\n.. image:: https://anaconda.org/conda-forge/textnets/badges/version.svg\n :target: https://anaconda.org/conda-forge/textnets\n :alt: Install with conda\n\n.. image:: https://joss.theoj.org/papers/10.21105/joss.02594/status.svg\n :target: https://doi.org/10.21105/joss.02594\n :alt: Published in Journal of Open Source Software\n\n**textnets** represents collections of texts as networks of documents and\nwords. This provides novel possibilities for the visualization and analysis of\ntexts.\n\n.. figure:: https://textnets.readthedocs.io/en/dev/_static/impeachment-statements.svg\n :alt: Bipartite network graph\n\n Network of U.S. Senators and words used in their official statements\n following the acquittal vote in the 2020 Senate impeachment trial (`source\n <https://www.jboy.space/blog/enemies-foreign-and-partisan.html>`_).\n\n**textnets** is free software under the terms of the GNU General Public License\nv3.\n\nThe ideas underlying **textnets** are presented in this paper:\n\n Christopher A. Bail, \"`Combining natural language processing and network\n analysis to examine how advocacy organizations stimulate conversation on social\n media`__,\" *Proceedings of the National Academy of Sciences of the United States\n of America* 113, no. 42 (2016), 11823\u201311828, doi:10.1073/pnas.1607151113.\n\n__ https://doi.org/10.1073/pnas.1607151113\n\nInitially begun as a Python implementation of `Chris Bail's textnets package\nfor R`_, **textnets** now comprises several unique features for term extraction\nand weighing, visualization, and analysis.\n\n.. _`Chris Bail's textnets package for R`: https://github.com/cbail/textnets/\n\nFeatures\n--------\n\n**textnets** builds on `spaCy`_, a state-of-the-art library for\nnatural-language processing, and `igraph`_ for network analysis. It uses the\n`Leiden algorithm`_ for community detection, which is able to perform community\ndetection on the bipartite (word\u2013group) network.\n\n.. _`igraph`: http://igraph.org/python/\n.. _`Leiden algorithm`: https://doi.org/10.1038/s41598-019-41695-z\n.. _`spaCy`: https://spacy.io/\n\n**textnets** is installable using the ``conda``, ``pip`` and ``nix`` package\nmanagers. It requires Python 3.8 or higher.\n\n**textnets** integrates seamlessly with Python's excellent `scientific stack`_.\nThat means that you can use **textnets** to analyze and visualize your data in\nJupyter notebooks!\n\n.. _`scientific stack`: https://scientific-python.org\n\nRead `the documentation <https://textnets.readthedocs.io>`_ to learn more about\nthe package's features.\n\nCitation\n--------\n\nUsing **textnets** in a scholarly publication? Please cite this paper:\n\n.. code-block:: bibtex\n\n @article{Boy2020,\n author = {John D. Boy},\n title = {textnets},\n subtitle = {A {P}ython Package for Text Analysis with Networks},\n journal = {Journal of Open Source Software},\n volume = {5},\n number = {54},\n pages = {2594},\n year = {2020},\n doi = {10.21105/joss.02594},\n }\n\nLearn More\n----------\n\n================== =============================================\n**Documentation** https://textnets.readthedocs.io/\n**Repository** https://github.com/jboynyc/textnets\n**Issues & Ideas** https://github.com/jboynyc/textnets/issues\n**Conda-Forge** https://anaconda.org/conda-forge/textnets\n**PyPI** https://pypi.org/project/textnets/\n**FOSDEM \u201922** https://fosdem.org/2022/schedule/event/open_research_textnets/\n**DOI** `10.21105/joss.02594 <https://doi.org/10.21105/joss.02594>`_\n**Archive** `10.5281/zenodo.3866676 <https://doi.org/10.5281/zenodo.3866676>`_\n================== =============================================\n\n.. image:: https://textnets.readthedocs.io/en/dev/_static/textnets-logo.svg\n :alt: textnets logo\n :target: https://textnets.readthedocs.io\n :align: center\n :width: 140\n\n",
"bugtrack_url": null,
"license": "GNU General Public License v3",
"summary": "Automated text analysis with networks",
"version": "0.9.4",
"project_urls": {
"Bug Tracker": "https://github.com/jboynyc/textnets/issues",
"Changelog": "https://textnets.readthedocs.io/en/stable/history.html",
"Documentation": "https://textnets.readthedocs.io",
"Homepage": "https://textnets.readthedocs.io",
"Repository": "https://github.com/jboynyc/textnets"
},
"split_keywords": [
"computational social science",
"network analysis",
"nlp",
"text analysis",
"visualization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c0eb8d62cf73ec6a37c95c046bcc20d80771856610ae2132b4f23760b5329e05",
"md5": "5c9b19e0bb75e5a244a325962d365a3a",
"sha256": "e35e78cadce8d50a7084a03506454cb2cf5f348932b270a55bfc9f495957df73"
},
"downloads": -1,
"filename": "textnets-0.9.4.tar.gz",
"has_sig": false,
"md5_digest": "5c9b19e0bb75e5a244a325962d365a3a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<3.13",
"size": 134107,
"upload_time": "2024-01-18T09:40:19",
"upload_time_iso_8601": "2024-01-18T09:40:19.444612Z",
"url": "https://files.pythonhosted.org/packages/c0/eb/8d62cf73ec6a37c95c046bcc20d80771856610ae2132b4f23760b5329e05/textnets-0.9.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-18 09:40:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jboynyc",
"github_project": "textnets",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "textnets"
}