textnets


Nametextnets JSON
Version 0.9.4 PyPI version JSON
download
home_pagehttps://textnets.readthedocs.io
SummaryAutomated text analysis with networks
upload_time2024-01-18 09:40:19
maintainer
docs_urlNone
authorJohn D. Boy
requires_python>=3.9,<3.13
licenseGNU General Public License v3
keywords computational social science network analysis nlp text analysis visualization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            =====================================
Textnets: text analysis with networks
=====================================

.. image:: https://mybinder.org/badge_logo.svg
   :target: https://mybinder.org/v2/gh/jboynyc/textnets-binder/trunk?filepath=Tutorial.ipynb
   :alt: Launch on Binder

.. image:: https://github.com/jboynyc/textnets/actions/workflows/ci.yml/badge.svg
   :target: https://github.com/jboynyc/textnets/actions/workflows/ci.yml
   :alt: CI status

.. image:: https://readthedocs.org/projects/textnets/badge/?version=stable
   :target: https://textnets.readthedocs.io/en/stable/?badge=stable
   :alt: Documentation Status

.. image:: https://anaconda.org/conda-forge/textnets/badges/version.svg
   :target: https://anaconda.org/conda-forge/textnets
   :alt: Install with conda

.. image:: https://joss.theoj.org/papers/10.21105/joss.02594/status.svg
   :target: https://doi.org/10.21105/joss.02594
   :alt: Published in Journal of Open Source Software

**textnets** represents collections of texts as networks of documents and
words. This provides novel possibilities for the visualization and analysis of
texts.

.. figure:: https://textnets.readthedocs.io/en/dev/_static/impeachment-statements.svg
   :alt: Bipartite network graph

   Network of U.S. Senators and words used in their official statements
   following the acquittal vote in the 2020 Senate impeachment trial (`source
   <https://www.jboy.space/blog/enemies-foreign-and-partisan.html>`_).

**textnets** is free software under the terms of the GNU General Public License
v3.

The ideas underlying **textnets** are presented in this paper:

  Christopher A. Bail, "`Combining natural language processing and network
  analysis to examine how advocacy organizations stimulate conversation on social
  media`__," *Proceedings of the National Academy of Sciences of the United States
  of America* 113, no. 42 (2016), 11823–11828, doi:10.1073/pnas.1607151113.

__ https://doi.org/10.1073/pnas.1607151113

Initially begun as a Python implementation of `Chris Bail's textnets package
for R`_, **textnets** now comprises several unique features for term extraction
and weighing, visualization, and analysis.

.. _`Chris Bail's textnets package for R`: https://github.com/cbail/textnets/

Features
--------

**textnets** builds on `spaCy`_, a state-of-the-art library for
natural-language processing, and `igraph`_ for network analysis. It uses the
`Leiden algorithm`_ for community detection, which is able to perform community
detection on the bipartite (word–group) network.

.. _`igraph`: http://igraph.org/python/
.. _`Leiden algorithm`: https://doi.org/10.1038/s41598-019-41695-z
.. _`spaCy`: https://spacy.io/

**textnets** is installable using the ``conda``, ``pip`` and ``nix`` package
managers. It requires Python 3.8 or higher.

**textnets** integrates seamlessly with Python's excellent `scientific stack`_.
That means that you can use **textnets** to analyze and visualize your data in
Jupyter notebooks!

.. _`scientific stack`: https://scientific-python.org

Read `the documentation <https://textnets.readthedocs.io>`_ to learn more about
the package's features.

Citation
--------

Using **textnets** in a scholarly publication? Please cite this paper:

.. code-block:: bibtex

   @article{Boy2020,
     author   = {John D. Boy},
     title    = {textnets},
     subtitle = {A {P}ython Package for Text Analysis with Networks},
     journal  = {Journal of Open Source Software},
     volume   = {5},
     number   = {54},
     pages    = {2594},
     year     = {2020},
     doi      = {10.21105/joss.02594},
   }

Learn More
----------

==================  =============================================
**Documentation**   https://textnets.readthedocs.io/
**Repository**      https://github.com/jboynyc/textnets
**Issues & Ideas**  https://github.com/jboynyc/textnets/issues
**Conda-Forge**     https://anaconda.org/conda-forge/textnets
**PyPI**            https://pypi.org/project/textnets/
**FOSDEM ’22**      https://fosdem.org/2022/schedule/event/open_research_textnets/
**DOI**             `10.21105/joss.02594 <https://doi.org/10.21105/joss.02594>`_
**Archive**         `10.5281/zenodo.3866676 <https://doi.org/10.5281/zenodo.3866676>`_
==================  =============================================

.. image:: https://textnets.readthedocs.io/en/dev/_static/textnets-logo.svg
   :alt: textnets logo
   :target: https://textnets.readthedocs.io
   :align: center
   :width: 140


            

Raw data

            {
    "_id": null,
    "home_page": "https://textnets.readthedocs.io",
    "name": "textnets",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9,<3.13",
    "maintainer_email": "",
    "keywords": "computational social science,network analysis,nlp,text analysis,visualization",
    "author": "John D. Boy",
    "author_email": "jboy@bius.moe",
    "download_url": "https://files.pythonhosted.org/packages/c0/eb/8d62cf73ec6a37c95c046bcc20d80771856610ae2132b4f23760b5329e05/textnets-0.9.4.tar.gz",
    "platform": null,
    "description": "=====================================\nTextnets: text analysis with networks\n=====================================\n\n.. image:: https://mybinder.org/badge_logo.svg\n   :target: https://mybinder.org/v2/gh/jboynyc/textnets-binder/trunk?filepath=Tutorial.ipynb\n   :alt: Launch on Binder\n\n.. image:: https://github.com/jboynyc/textnets/actions/workflows/ci.yml/badge.svg\n   :target: https://github.com/jboynyc/textnets/actions/workflows/ci.yml\n   :alt: CI status\n\n.. image:: https://readthedocs.org/projects/textnets/badge/?version=stable\n   :target: https://textnets.readthedocs.io/en/stable/?badge=stable\n   :alt: Documentation Status\n\n.. image:: https://anaconda.org/conda-forge/textnets/badges/version.svg\n   :target: https://anaconda.org/conda-forge/textnets\n   :alt: Install with conda\n\n.. image:: https://joss.theoj.org/papers/10.21105/joss.02594/status.svg\n   :target: https://doi.org/10.21105/joss.02594\n   :alt: Published in Journal of Open Source Software\n\n**textnets** represents collections of texts as networks of documents and\nwords. This provides novel possibilities for the visualization and analysis of\ntexts.\n\n.. figure:: https://textnets.readthedocs.io/en/dev/_static/impeachment-statements.svg\n   :alt: Bipartite network graph\n\n   Network of U.S. Senators and words used in their official statements\n   following the acquittal vote in the 2020 Senate impeachment trial (`source\n   <https://www.jboy.space/blog/enemies-foreign-and-partisan.html>`_).\n\n**textnets** is free software under the terms of the GNU General Public License\nv3.\n\nThe ideas underlying **textnets** are presented in this paper:\n\n  Christopher A. Bail, \"`Combining natural language processing and network\n  analysis to examine how advocacy organizations stimulate conversation on social\n  media`__,\" *Proceedings of the National Academy of Sciences of the United States\n  of America* 113, no. 42 (2016), 11823\u201311828, doi:10.1073/pnas.1607151113.\n\n__ https://doi.org/10.1073/pnas.1607151113\n\nInitially begun as a Python implementation of `Chris Bail's textnets package\nfor R`_, **textnets** now comprises several unique features for term extraction\nand weighing, visualization, and analysis.\n\n.. _`Chris Bail's textnets package for R`: https://github.com/cbail/textnets/\n\nFeatures\n--------\n\n**textnets** builds on `spaCy`_, a state-of-the-art library for\nnatural-language processing, and `igraph`_ for network analysis. It uses the\n`Leiden algorithm`_ for community detection, which is able to perform community\ndetection on the bipartite (word\u2013group) network.\n\n.. _`igraph`: http://igraph.org/python/\n.. _`Leiden algorithm`: https://doi.org/10.1038/s41598-019-41695-z\n.. _`spaCy`: https://spacy.io/\n\n**textnets** is installable using the ``conda``, ``pip`` and ``nix`` package\nmanagers. It requires Python 3.8 or higher.\n\n**textnets** integrates seamlessly with Python's excellent `scientific stack`_.\nThat means that you can use **textnets** to analyze and visualize your data in\nJupyter notebooks!\n\n.. _`scientific stack`: https://scientific-python.org\n\nRead `the documentation <https://textnets.readthedocs.io>`_ to learn more about\nthe package's features.\n\nCitation\n--------\n\nUsing **textnets** in a scholarly publication? Please cite this paper:\n\n.. code-block:: bibtex\n\n   @article{Boy2020,\n     author   = {John D. Boy},\n     title    = {textnets},\n     subtitle = {A {P}ython Package for Text Analysis with Networks},\n     journal  = {Journal of Open Source Software},\n     volume   = {5},\n     number   = {54},\n     pages    = {2594},\n     year     = {2020},\n     doi      = {10.21105/joss.02594},\n   }\n\nLearn More\n----------\n\n==================  =============================================\n**Documentation**   https://textnets.readthedocs.io/\n**Repository**      https://github.com/jboynyc/textnets\n**Issues & Ideas**  https://github.com/jboynyc/textnets/issues\n**Conda-Forge**     https://anaconda.org/conda-forge/textnets\n**PyPI**            https://pypi.org/project/textnets/\n**FOSDEM \u201922**      https://fosdem.org/2022/schedule/event/open_research_textnets/\n**DOI**             `10.21105/joss.02594 <https://doi.org/10.21105/joss.02594>`_\n**Archive**         `10.5281/zenodo.3866676 <https://doi.org/10.5281/zenodo.3866676>`_\n==================  =============================================\n\n.. image:: https://textnets.readthedocs.io/en/dev/_static/textnets-logo.svg\n   :alt: textnets logo\n   :target: https://textnets.readthedocs.io\n   :align: center\n   :width: 140\n\n",
    "bugtrack_url": null,
    "license": "GNU General Public License v3",
    "summary": "Automated text analysis with networks",
    "version": "0.9.4",
    "project_urls": {
        "Bug Tracker": "https://github.com/jboynyc/textnets/issues",
        "Changelog": "https://textnets.readthedocs.io/en/stable/history.html",
        "Documentation": "https://textnets.readthedocs.io",
        "Homepage": "https://textnets.readthedocs.io",
        "Repository": "https://github.com/jboynyc/textnets"
    },
    "split_keywords": [
        "computational social science",
        "network analysis",
        "nlp",
        "text analysis",
        "visualization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c0eb8d62cf73ec6a37c95c046bcc20d80771856610ae2132b4f23760b5329e05",
                "md5": "5c9b19e0bb75e5a244a325962d365a3a",
                "sha256": "e35e78cadce8d50a7084a03506454cb2cf5f348932b270a55bfc9f495957df73"
            },
            "downloads": -1,
            "filename": "textnets-0.9.4.tar.gz",
            "has_sig": false,
            "md5_digest": "5c9b19e0bb75e5a244a325962d365a3a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9,<3.13",
            "size": 134107,
            "upload_time": "2024-01-18T09:40:19",
            "upload_time_iso_8601": "2024-01-18T09:40:19.444612Z",
            "url": "https://files.pythonhosted.org/packages/c0/eb/8d62cf73ec6a37c95c046bcc20d80771856610ae2132b4f23760b5329e05/textnets-0.9.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-18 09:40:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jboynyc",
    "github_project": "textnets",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "textnets"
}
        
Elapsed time: 1.74351s