[![Python](https://img.shields.io/pypi/pyversions/tensorflow.svg?style=plastic)](https://badge.fury.io/py/tensorflow)
[![PyPI](https://badge.fury.io/py/tensorflow.svg)](https://badge.fury.io/py/tensorflow)
TensorFlow is an open source software library for high performance numerical
computation. Its flexible architecture allows easy deployment of computation
across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters
of servers to mobile and edge devices.
Originally developed by researchers and engineers from the Google Brain team
within Google's AI organization, it comes with strong support for machine
learning and deep learning and the flexible numerical computation core is used
across many other scientific domains. TensorFlow is licensed under [Apache
2.0](https://github.com/tensorflow/tensorflow/blob/master/LICENSE).
<pre>
build environment is:
cuda 11.6.2 cudnn 8.4
nccl 2.12
tensorrt: 8.4 optional
support nvidia Compute Capability 6.0 6.1 7.0 7.5 8.0 8.6
</pre>
build https://github.com/tensorflow/tensorflow by https://github.com/ssbuild with mkl support
and test gpu pass as follow cuda 116 and cuda 113 , any other you can try also.
<pre>
docker pull ssdog/cuda:11.6.2-runtime-ubuntu18.04
docker pull ssdog/cuda:11.6.2-runtime-ubuntu20.04
docker pull ssdog/cuda:11.3.1-runtime-ubuntu18.04
docker pull ssdog/cuda:11.3.1-runtime-ubuntu20.04
docker pull ssdog/cuda:11.7.1-runtime-ubuntu18.04
docker pull ssdog/cuda:11.7.1-runtime-ubuntu20.04
</pre>
Raw data
{
"_id": null,
"home_page": "https://www.tensorflow.org/",
"name": "tf-gpu",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "tensorflow tensor machine learning",
"author": "Google Inc.",
"author_email": "packages@tensorflow.org",
"download_url": "https://github.com/tensorflow/tensorflow/tags",
"platform": null,
"description": "[![Python](https://img.shields.io/pypi/pyversions/tensorflow.svg?style=plastic)](https://badge.fury.io/py/tensorflow)\n[![PyPI](https://badge.fury.io/py/tensorflow.svg)](https://badge.fury.io/py/tensorflow)\n\nTensorFlow is an open source software library for high performance numerical\ncomputation. Its flexible architecture allows easy deployment of computation\nacross a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters\nof servers to mobile and edge devices.\n\nOriginally developed by researchers and engineers from the Google Brain team\nwithin Google's AI organization, it comes with strong support for machine\nlearning and deep learning and the flexible numerical computation core is used\nacross many other scientific domains. TensorFlow is licensed under [Apache\n2.0](https://github.com/tensorflow/tensorflow/blob/master/LICENSE).\n\n<pre>\nbuild environment is: \ncuda 11.6.2 cudnn 8.4 \nnccl 2.12 \ntensorrt: 8.4 optional \nsupport nvidia Compute Capability 6.0 6.1 7.0 7.5 8.0 8.6\n</pre>\n\nbuild https://github.com/tensorflow/tensorflow by https://github.com/ssbuild with mkl support\n\nand test gpu pass as follow cuda 116 and cuda 113 , any other you can try also.\n\n<pre>\ndocker pull ssdog/cuda:11.6.2-runtime-ubuntu18.04 \ndocker pull ssdog/cuda:11.6.2-runtime-ubuntu20.04 \ndocker pull ssdog/cuda:11.3.1-runtime-ubuntu18.04 \ndocker pull ssdog/cuda:11.3.1-runtime-ubuntu20.04\ndocker pull ssdog/cuda:11.7.1-runtime-ubuntu18.04 \ndocker pull ssdog/cuda:11.7.1-runtime-ubuntu20.04\n</pre>\n\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "TensorFlow is an open source machine learning framework for everyone.",
"version": "2.10.0",
"split_keywords": [
"tensorflow",
"tensor",
"machine",
"learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "02ebd9f25939c6be8d3f9764545e7cc591750b54c053872ad9fa25c408e4e486",
"md5": "70515a058011631905a657e23ae2ef17",
"sha256": "3120d12d7d2ae03af384c84dab54bbd0de1e9a9e356a3429f9451821d66eed2c"
},
"downloads": -1,
"filename": "tf_gpu-2.10.0-cp310-cp310-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "70515a058011631905a657e23ae2ef17",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 429554280,
"upload_time": "2022-09-10T15:14:03",
"upload_time_iso_8601": "2022-09-10T15:14:03.289708Z",
"url": "https://files.pythonhosted.org/packages/02/eb/d9f25939c6be8d3f9764545e7cc591750b54c053872ad9fa25c408e4e486/tf_gpu-2.10.0-cp310-cp310-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "593df004d69cac1f688357d17ab43ecc24539a686bf72e5b6a4a287ddcd53029",
"md5": "b37b8305c91241dc287f62b8093c5287",
"sha256": "889b29d7ef9ef178602e0a65ee79bb5ea8359ce2d3a7b10ab2cfd21e24c0c5ef"
},
"downloads": -1,
"filename": "tf_gpu-2.10.0-cp38-cp38-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "b37b8305c91241dc287f62b8093c5287",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 429539395,
"upload_time": "2022-09-10T15:15:47",
"upload_time_iso_8601": "2022-09-10T15:15:47.593962Z",
"url": "https://files.pythonhosted.org/packages/59/3d/f004d69cac1f688357d17ab43ecc24539a686bf72e5b6a4a287ddcd53029/tf_gpu-2.10.0-cp38-cp38-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "62606af5adb67b58a49dbd8115f6ad7ad54655bb4921dfd7475587516b23b590",
"md5": "3fb7c1e97c833069dda276a1f0d1407e",
"sha256": "3c9e35d55bf041eecab8d795d07a7765ff7adcf6113438bdba9d332140864af0"
},
"downloads": -1,
"filename": "tf_gpu-2.10.0-cp39-cp39-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "3fb7c1e97c833069dda276a1f0d1407e",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 429586407,
"upload_time": "2022-09-10T15:24:50",
"upload_time_iso_8601": "2022-09-10T15:24:50.319960Z",
"url": "https://files.pythonhosted.org/packages/62/60/6af5adb67b58a49dbd8115f6ad7ad54655bb4921dfd7475587516b23b590/tf_gpu-2.10.0-cp39-cp39-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-09-10 15:14:03",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "tf-gpu"
}