thaixtransformers


Namethaixtransformers JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/pythainlp/thaixtransformers
SummaryThaiXtransformers: Use Pretraining RoBERTa based Thai language models from VISTEC-depa AI Research Institute of Thailand.
upload_time2023-07-07 11:40:43
maintainer
docs_urlNone
authorPyThaiNLP
requires_python>=3.8
licenseApache Software License 2.0
keywords thainlp nlp natural language processing text analytics text processing localization computational linguistics thainlp thai nlp thai language
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ThaiXtransformers

<a target="_blank" href="https://colab.research.google.com/github/PyThaiNLP/thaixtransformers/blob/main/notebooks/wangchanberta_getting_started_aireseach.ipynb">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>


**Use Pretraining RoBERTa based Thai language models from VISTEC-depa AI Research Institute of Thailand.**

Fork from [vistec-AI/thai2transformers](https://github.com/vistec-AI/thai2transformers).


This project build the tokenizer and preprocessing data for RoBERTa models from VISTEC-depa AI Research Institute of Thailand.

Paper: [WangchanBERTa: Pretraining transformer-based Thai Language Models](https://arxiv.org/abs/2101.09635)


## Install

> pip install thaixtransformers

## Usage

### Tokenizer

> from thaixtransformers import Tokenizer

If you use models, you should load model by model name.

> Tokenizer(model_name) -> Tokeinzer

**Example**

```python
from thaixtransformers import Tokenizer
from transformers import pipeline
from transformers import AutoModelForMaskedLM

tokenizer = Tokenizer("airesearch/wangchanberta-base-wiki-newmm")
model = AutoModelForMaskedLM.from_pretrained("airesearch/wangchanberta-base-wiki-newmm")

classifier = pipeline("fill-mask",model=model,tokenizer=tokenizer)
print(classifier("ผมชอบ<mask>มาก ๆ"))
# output:
#    [{'score': 0.05261131376028061,
#  'token': 6052,
#  'token_str': 'อินเทอร์เน็ต',
#  'sequence': 'ผมชอบอินเทอร์เน็ตมากๆ'},
# {'score': 0.03980604186654091,
#  'token': 11893,
#  'token_str': 'อ่านหนังสือ',
#  'sequence': 'ผมชอบอ่านหนังสือมากๆ'},
#    ...]
```

### Preprocess

If you want to preprocessing data before training model, you can use preprocess.

> from thaixtransformers.preprocess import process_transformers

> process_transformers(str) -> str

**Example**

```python
from thaixtransformers.preprocess import process_transformers

print(process_transformers("สวัสดี   :D"))
# output: 'สวัสดี<_>:d'
```


## BibTeX entry and citation info

```
@misc{lowphansirikul2021wangchanberta,
      title={WangchanBERTa: Pretraining transformer-based Thai Language Models}, 
      author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong},
      year={2021},
      eprint={2101.09635},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pythainlp/thaixtransformers",
    "name": "thaixtransformers",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "thainlp,NLP,natural language processing,text analytics,text processing,localization,computational linguistics,ThaiNLP,Thai NLP,Thai language",
    "author": "PyThaiNLP",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/15/eb/7056a9ef57cdce0c35e914d7cfeb63facfa570e4ba84e93386df52880c19/thaixtransformers-0.1.0.tar.gz",
    "platform": null,
    "description": "# ThaiXtransformers\n\n<a target=\"_blank\" href=\"https://colab.research.google.com/github/PyThaiNLP/thaixtransformers/blob/main/notebooks/wangchanberta_getting_started_aireseach.ipynb\">\n  <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n</a>\n\n\n**Use Pretraining RoBERTa based Thai language models from VISTEC-depa AI Research Institute of Thailand.**\n\nFork from [vistec-AI/thai2transformers](https://github.com/vistec-AI/thai2transformers).\n\n\nThis project build the tokenizer and preprocessing data for RoBERTa models from VISTEC-depa AI Research Institute of Thailand.\n\nPaper: [WangchanBERTa: Pretraining transformer-based Thai Language Models](https://arxiv.org/abs/2101.09635)\n\n\n## Install\n\n> pip install thaixtransformers\n\n## Usage\n\n### Tokenizer\n\n> from thaixtransformers import Tokenizer\n\nIf you use models, you should load model by model name.\n\n> Tokenizer(model_name) -> Tokeinzer\n\n**Example**\n\n```python\nfrom thaixtransformers import Tokenizer\nfrom transformers import pipeline\nfrom transformers import AutoModelForMaskedLM\n\ntokenizer = Tokenizer(\"airesearch/wangchanberta-base-wiki-newmm\")\nmodel = AutoModelForMaskedLM.from_pretrained(\"airesearch/wangchanberta-base-wiki-newmm\")\n\nclassifier = pipeline(\"fill-mask\",model=model,tokenizer=tokenizer)\nprint(classifier(\"\u0e1c\u0e21\u0e0a\u0e2d\u0e1a<mask>\u0e21\u0e32\u0e01 \u0e46\"))\n# output:\n#    [{'score': 0.05261131376028061,\n#  'token': 6052,\n#  'token_str': '\u0e2d\u0e34\u0e19\u0e40\u0e17\u0e2d\u0e23\u0e4c\u0e40\u0e19\u0e47\u0e15',\n#  'sequence': '\u0e1c\u0e21\u0e0a\u0e2d\u0e1a\u0e2d\u0e34\u0e19\u0e40\u0e17\u0e2d\u0e23\u0e4c\u0e40\u0e19\u0e47\u0e15\u0e21\u0e32\u0e01\u0e46'},\n# {'score': 0.03980604186654091,\n#  'token': 11893,\n#  'token_str': '\u0e2d\u0e48\u0e32\u0e19\u0e2b\u0e19\u0e31\u0e07\u0e2a\u0e37\u0e2d',\n#  'sequence': '\u0e1c\u0e21\u0e0a\u0e2d\u0e1a\u0e2d\u0e48\u0e32\u0e19\u0e2b\u0e19\u0e31\u0e07\u0e2a\u0e37\u0e2d\u0e21\u0e32\u0e01\u0e46'},\n#    ...]\n```\n\n### Preprocess\n\nIf you want to preprocessing data before training model, you can use preprocess.\n\n> from thaixtransformers.preprocess import process_transformers\n\n> process_transformers(str) -> str\n\n**Example**\n\n```python\nfrom thaixtransformers.preprocess import process_transformers\n\nprint(process_transformers(\"\u0e2a\u0e27\u0e31\u0e2a\u0e14\u0e35   :D\"))\n# output: '\u0e2a\u0e27\u0e31\u0e2a\u0e14\u0e35<_>:d'\n```\n\n\n## BibTeX entry and citation info\n\n```\n@misc{lowphansirikul2021wangchanberta,\n      title={WangchanBERTa: Pretraining transformer-based Thai Language Models}, \n      author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong},\n      year={2021},\n      eprint={2101.09635},\n      archivePrefix={arXiv},\n      primaryClass={cs.CL}\n}\n```\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "ThaiXtransformers: Use Pretraining RoBERTa based Thai language models from VISTEC-depa AI Research Institute of Thailand.",
    "version": "0.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/pythainlp/thaixtransformers/issues",
        "Documentation": "https://github.com/pythainlp/thaixtransformers",
        "Homepage": "https://github.com/pythainlp/thaixtransformers",
        "Source Code": "https://github.com/pythainlp/thaixtransformers"
    },
    "split_keywords": [
        "thainlp",
        "nlp",
        "natural language processing",
        "text analytics",
        "text processing",
        "localization",
        "computational linguistics",
        "thainlp",
        "thai nlp",
        "thai language"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fa5988774229cada59628e851420096dc5779009c1511696f23fe78225c3d384",
                "md5": "440a757f48080f4b0036719cab7b9d00",
                "sha256": "b9373c75458075f0c534ed4ab422e5490872cc31595d6c3a2aff42ebbd4d8350"
            },
            "downloads": -1,
            "filename": "thaixtransformers-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "440a757f48080f4b0036719cab7b9d00",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 19083,
            "upload_time": "2023-07-07T11:40:41",
            "upload_time_iso_8601": "2023-07-07T11:40:41.725350Z",
            "url": "https://files.pythonhosted.org/packages/fa/59/88774229cada59628e851420096dc5779009c1511696f23fe78225c3d384/thaixtransformers-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "15eb7056a9ef57cdce0c35e914d7cfeb63facfa570e4ba84e93386df52880c19",
                "md5": "73b7f63e0efbc69c927f68587fe64cde",
                "sha256": "bb8b49dc0660baf92e17c483e6b42346dee2df357ddc397ac5e4c12b5806443a"
            },
            "downloads": -1,
            "filename": "thaixtransformers-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "73b7f63e0efbc69c927f68587fe64cde",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 18005,
            "upload_time": "2023-07-07T11:40:43",
            "upload_time_iso_8601": "2023-07-07T11:40:43.289521Z",
            "url": "https://files.pythonhosted.org/packages/15/eb/7056a9ef57cdce0c35e914d7cfeb63facfa570e4ba84e93386df52880c19/thaixtransformers-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-07 11:40:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pythainlp",
    "github_project": "thaixtransformers",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "thaixtransformers"
}
        
Elapsed time: 1.37672s