<h1 align="center">
<img src="https://raw.githubusercontent.com/yutanagano/tidytcells/main/tidytcells.png" width=700>
</h1>
![Tests](https://github.com/yutanagano/tidytcells/actions/workflows/tests.yaml/badge.svg)
[![Docs](https://readthedocs.org/projects/tidytcells/badge/?version=latest)](https://tidytcells.readthedocs.io)
[![License](https://img.shields.io/badge/license-MIT-blue)](https://github.com/yutanagano/tidytcells?tab=MIT-1-ov-file#readme)
[![DOI](https://img.shields.io/badge/DOI-10.3389/fimmu.2023.1276106-pink)](https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2023.1276106)
`tidytcells` is a lightweight python package that cleans and standardizes T cell receptor (TR) and Major Histocompatibility (MH) data to be [IMGT](https://www.imgt.org/)-compliant.
The main purpose of the package is to solve the problem of parsing and collating together non-standardized TR datasets.
It is often difficult to compile TR data from multiple sources because the formats/nomenclature of how each dataset encodes TR and MH gene names are slightly different, or even inconsistent within themselves.
`tidytcells` can ameliorate this issue by auto-correcting and auto-standardizing your data.
Check out the [documentation page](https://tidytcells.readthedocs.io).
## Installation
### Via [PyPI](https://pypi.org/project/tidytcells/) (recommended)
`tidytcells` can be installed using `pip`:
```bash
$ pip install tidytcells
```
### From [source](https://github.com/yutanagano/tidytcells)
The source code for the package is available [on Github](https://github.com/yutanagano/tidytcells).
To install from source, clone the git repository, and run:
```bash
$ pip install .
```
from inside the project root directory.
## Citing tidytcells
To cite `tidytcells`, please refer to [this manuscript](https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2023.1276106).
## Useful links
- [Documentation](https://tidytcells.readthedocs.io)
- [PyPI page](https://pypi.org/project/tidytcells)
- [Publication page](https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2023.1276106)
Raw data
{
"_id": null,
"home_page": null,
"name": "tidytcells",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Yuta Nagano <yutanagano51@proton.me>",
"keywords": "immunology, bioinformatics, TCR, TR, MHC, MH, HLA, T cell, IMGT",
"author": null,
"author_email": "Yuta Nagano <yutanagano51@proton.me>",
"download_url": "https://files.pythonhosted.org/packages/24/77/ac32d06cc2d19e31e1d3daed7bb5545ff64d51eaca64deb3772673490ae0/tidytcells-2.1.3.tar.gz",
"platform": null,
"description": "<h1 align=\"center\">\n <img src=\"https://raw.githubusercontent.com/yutanagano/tidytcells/main/tidytcells.png\" width=700>\n</h1>\n\n![Tests](https://github.com/yutanagano/tidytcells/actions/workflows/tests.yaml/badge.svg)\n[![Docs](https://readthedocs.org/projects/tidytcells/badge/?version=latest)](https://tidytcells.readthedocs.io)\n[![License](https://img.shields.io/badge/license-MIT-blue)](https://github.com/yutanagano/tidytcells?tab=MIT-1-ov-file#readme)\n[![DOI](https://img.shields.io/badge/DOI-10.3389/fimmu.2023.1276106-pink)](https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2023.1276106)\n\n`tidytcells` is a lightweight python package that cleans and standardizes T cell receptor (TR) and Major Histocompatibility (MH) data to be [IMGT](https://www.imgt.org/)-compliant.\nThe main purpose of the package is to solve the problem of parsing and collating together non-standardized TR datasets.\nIt is often difficult to compile TR data from multiple sources because the formats/nomenclature of how each dataset encodes TR and MH gene names are slightly different, or even inconsistent within themselves.\n`tidytcells` can ameliorate this issue by auto-correcting and auto-standardizing your data.\nCheck out the [documentation page](https://tidytcells.readthedocs.io).\n\n## Installation\n\n### Via [PyPI](https://pypi.org/project/tidytcells/) (recommended)\n\n`tidytcells` can be installed using `pip`:\n\n```bash\n$ pip install tidytcells\n```\n\n### From [source](https://github.com/yutanagano/tidytcells)\n\nThe source code for the package is available [on Github](https://github.com/yutanagano/tidytcells).\nTo install from source, clone the git repository, and run:\n\n```bash\n$ pip install .\n```\n\nfrom inside the project root directory.\n\n## Citing tidytcells\n\nTo cite `tidytcells`, please refer to [this manuscript](https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2023.1276106).\n\n## Useful links\n\n- [Documentation](https://tidytcells.readthedocs.io)\n- [PyPI page](https://pypi.org/project/tidytcells)\n- [Publication page](https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2023.1276106)\n",
"bugtrack_url": null,
"license": null,
"summary": "Standardise TR/MH data",
"version": "2.1.3",
"project_urls": {
"Documentation": "https://tidytcells.readthedocs.io",
"Homepage": "https://tidytcells.readthedocs.io",
"Issues": "https://github.com/yutanagano/tidytcells/issues",
"Repository": "https://github.com/yutanagano/tidytcells"
},
"split_keywords": [
"immunology",
" bioinformatics",
" tcr",
" tr",
" mhc",
" mh",
" hla",
" t cell",
" imgt"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a348b350f771d1ab6f38e723cb5cda500d2752dd680c176cd2a3c66973d496d4",
"md5": "1d4d4b977cf24d37a185992367c3d8d7",
"sha256": "72fd0c478f644de0bd0dfa52211cd0c67485a539f243cefcf8bc983ba985c8fa"
},
"downloads": -1,
"filename": "tidytcells-2.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1d4d4b977cf24d37a185992367c3d8d7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 90528,
"upload_time": "2024-07-25T12:40:30",
"upload_time_iso_8601": "2024-07-25T12:40:30.051225Z",
"url": "https://files.pythonhosted.org/packages/a3/48/b350f771d1ab6f38e723cb5cda500d2752dd680c176cd2a3c66973d496d4/tidytcells-2.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2477ac32d06cc2d19e31e1d3daed7bb5545ff64d51eaca64deb3772673490ae0",
"md5": "dd7476895c78ce3a4c2fcd0e6903a068",
"sha256": "096a78916228d542db8881993d5d8bb8615ea2440bd5b5f0dd56b6a0d1a16e17"
},
"downloads": -1,
"filename": "tidytcells-2.1.3.tar.gz",
"has_sig": false,
"md5_digest": "dd7476895c78ce3a4c2fcd0e6903a068",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 79234,
"upload_time": "2024-07-25T12:40:31",
"upload_time_iso_8601": "2024-07-25T12:40:31.744320Z",
"url": "https://files.pythonhosted.org/packages/24/77/ac32d06cc2d19e31e1d3daed7bb5545ff64d51eaca64deb3772673490ae0/tidytcells-2.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-25 12:40:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "yutanagano",
"github_project": "tidytcells",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "tidytcells"
}