timeagi


Nametimeagi JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/DC-research/TEMPO
SummaryTime Series Foundation Model - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting
upload_time2024-11-30 05:06:40
maintainerNone
docs_urlNone
authorDefu Cao
requires_python<4,>=3.7.2
licenseNone
keywords time-series ml llm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Time Series Foundation Model - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting

[![preprint](https://img.shields.io/static/v1?label=arXiv&message=2310.04948&color=B31B1B&logo=arXiv)](https://arxiv.org/pdf/2310.04948)
[![huggingface](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-FFD21E)](https://huggingface.co/Melady/TEMPO)
[![License: MIT](https://img.shields.io/badge/License-Apache--2.0-green.svg)](https://opensource.org/licenses/Apache-2.0)
</div>

<div align="center"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/TEMPO_logo.png width=80% /></div>

The official code for [["TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting (ICLR 2024)"]](https://arxiv.org/pdf/2310.04948).

TEMPO is one of the very first open source **Time Series Foundation Models** for forecasting task v1.0 version.

<div align="center"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/TEMPO.png width=80% /></div>

## ⏳ Upcoming Features

- [βœ…] Parallel pre-training pipeline
- [] Probabilistic forecasting
- [] Multimodal dataset
- [] Multimodal pre-training script


## πŸš€ News


- **Oct 2024**: πŸš€ We've streamlined our code structure, enabling users to download the pre-trained model and perform zero-shot inference with a single line of code! Check out our [demo](./run_TEMPO_demo.py) for more details. Our model's download count on HuggingFace is now trackable!

- **Jun 2024**: πŸš€ We added demos for reproducing zero-shot experiments in [Colab](https://colab.research.google.com/drive/11qGpT7H1JMaTlMlm9WtHFZ3_cJz7p-og?usp=sharing).  We also added the demo of building the customer dataset and directly do the inference via our pre-trained foundation model: [Colab](https://colab.research.google.com/drive/1ZpWbK0L6mq1pav2yDqOuORo4rHbv80-A?usp=sharing)
- **May 2024**: πŸš€ TEMPO has launched a GUI-based online [demo](https://4171a8a7484b3e9148.gradio.live/), allowing users to directly interact with our foundation model!
- **May 2024**: πŸš€ TEMPO published the 80M pretrained foundation model in [HuggingFace](https://huggingface.co/Melady/TEMPO)!
- **May 2024**: πŸ§ͺ We added the code for pretraining and inference TEMPO models.  You can find a pre-training script demo in [this folder](./scripts/etth2.sh). We also added [a script](./scripts/etth2_test.sh) for the inference demo.

- **Mar 2024**: πŸ“ˆ  Released [TETS dataset](https://drive.google.com/file/d/1Hu2KFj0kp4kIIpjbss2ciLCV_KiBreoJ/view?usp=drive_link) from [S&P 500](https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview) used in multimodal experiments in TEMPO. 
- **Mar 2024**: πŸ§ͺ TEMPO published the project [code](https://github.com/DC-research/TEMPO) and the pre-trained checkpoint [online](https://drive.google.com/file/d/11Ho_seP9NGh-lQCyBkvQhAQFy_3XVwKp/view?usp=drive_link)! 
- **Jan 2024**: πŸš€ TEMPO [paper](https://openreview.net/pdf?id=YH5w12OUuU) get accepted by ICLR!
- **Oct 2023**: πŸš€ TEMPO [paper](https://arxiv.org/pdf/2310.04948) released on Arxiv!

## Build the environment

```
conda create -n tempo python=3.8
```
```
conda activate tempo
```
```
pip install timeagi
```

## Script Demo

A streamlining example showing how to perform forecasting using TEMPO:

```python
# Third-party library imports
import numpy as np
import torch
from numpy.random import choice
# Local imports
from models.TEMPO import TEMPO


model = TEMPO.load_pretrained_model(
        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'),
        repo_id = "Melady/TEMPO",
        filename = "TEMPO-80M_v1.pth",
        cache_dir = "./checkpoints/TEMPO_checkpoints"  
)

input_data = np.random.rand(336)    # Random input data
with torch.no_grad():
        predicted_values = model.predict(input_data, pred_length=96)
print("Predicted values:")
print(predicted_values)

```

## Demos

### 1. Reproducing zero-shot experiments on ETTh2:

Please try to reproduc the zero-shot experiments on ETTh2 [[here on Colab]](https://colab.research.google.com/drive/11qGpT7H1JMaTlMlm9WtHFZ3_cJz7p-og?usp=sharing).

### 2. Zero-shot experiments on customer dataset:

We use the following Colab page to show the demo of building the customer dataset and directly do the inference via our pre-trained foundation model: [[Colab]](https://colab.research.google.com/drive/1ZpWbK0L6mq1pav2yDqOuORo4rHbv80-A?usp=sharing)

### 3. Online demo:

Please try our foundation model demo [[here]](https://4171a8a7484b3e9148.gradio.live).

<div align="center"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/TEMPO_demo.jpg width=80% /></div>

## Practice on your end

We also updated our models on HuggingFace: [[Melady/TEMPO]](https://huggingface.co/Melady/TEMPO).



### Get Data

   Download the data from [[Google Drive]](https://drive.google.com/drive/folders/13Cg1KYOlzM5C7K8gK8NfC-F3EYxkM3D2?usp=sharing) or [[Baidu Drive]](https://pan.baidu.com/s/1r3KhGd0Q9PJIUZdfEYoymg?pwd=i9iy), and place the downloaded data in the folder`./dataset`. You can also download the STL results from [[Google Drive]](https://drive.google.com/file/d/1gWliIGDDSi2itUAvYaRgACru18j753Kw/view?usp=sharing), and place the downloaded data in the folder`./stl`.

### Run TEMPO

### Pre-Training Stage
```
bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather].sh
```

### Test/ Inference Stage

After training, we can test TEMPO model under the zero-shot setting:

```
bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather]_test.sh
```

<div align="center"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/results.jpg width=90% /></div>


## Pre-trained Models

You can download the pre-trained model from [[Google Drive]](https://drive.google.com/file/d/11Ho_seP9NGh-lQCyBkvQhAQFy_3XVwKp/view?usp=drive_link) and then run the test script for fun.

## TETS dataset

Here is the prompts use to generate the coresponding textual informaton of time series via [[OPENAI ChatGPT-3.5 API]](https://platform.openai.com/docs/guides/text-generation)

<div align="center"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/TETS_prompt.png width=80% /></div>

The time series data are come from [[S&P 500]](https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview). Here is the EBITDA case for one company from the dataset:


<div align="center"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/Company1_ebitda_summary.png width=80% /></div>

Example of generated contextual information for the Company marked above:

<div align="center"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics//Company1_ebitda_summary_words.jpg width=80% /></div>




You can download the processed data with text embedding from GPT2 from: [[TETS]](https://drive.google.com/file/d/1Hu2KFj0kp4kIIpjbss2ciLCV_KiBreoJ/view?usp=drive_link
).

## Contact
Feel free to connect DefuCao@USC.EDU / YanLiu.CS@USC.EDU if you’re interested in applying TEMPO to your real-world application.

## Cite our work
```
@inproceedings{
cao2024tempo,
title={{TEMPO}: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting},
author={Defu Cao and Furong Jia and Sercan O Arik and Tomas Pfister and Yixiang Zheng and Wen Ye and Yan Liu},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=YH5w12OUuU}
}
```

```
@article{
   Jia_Wang_Zheng_Cao_Liu_2024, 
   title={GPT4MTS: Prompt-based Large Language Model for Multimodal Time-series Forecasting}, 
   volume={38}, 
   url={https://ojs.aaai.org/index.php/AAAI/article/view/30383}, 
   DOI={10.1609/aaai.v38i21.30383}, 
   number={21}, 
   journal={Proceedings of the AAAI Conference on Artificial Intelligence}, 
   author={Jia, Furong and Wang, Kevin and Zheng, Yixiang and Cao, Defu and Liu, Yan}, 
   year={2024}, month={Mar.}, pages={23343-23351} 
   }
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/DC-research/TEMPO",
    "name": "timeagi",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4,>=3.7.2",
    "maintainer_email": null,
    "keywords": "time-series, ml, llm",
    "author": "Defu Cao",
    "author_email": "defucao@usc.edu",
    "download_url": "https://files.pythonhosted.org/packages/eb/0b/09bfb453dd74668acaa6c6ca3e022a54df8eed0f2571a427e26e3c06e86f/timeagi-0.0.1.tar.gz",
    "platform": null,
    "description": "# Time Series Foundation Model - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting\n\n[![preprint](https://img.shields.io/static/v1?label=arXiv&message=2310.04948&color=B31B1B&logo=arXiv)](https://arxiv.org/pdf/2310.04948)\n[![huggingface](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-FFD21E)](https://huggingface.co/Melady/TEMPO)\n[![License: MIT](https://img.shields.io/badge/License-Apache--2.0-green.svg)](https://opensource.org/licenses/Apache-2.0)\n</div>\n\n<div align=\"center\"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/TEMPO_logo.png width=80% /></div>\n\nThe official code for [[\"TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting (ICLR 2024)\"]](https://arxiv.org/pdf/2310.04948).\n\nTEMPO is one of the very first open source **Time Series Foundation Models** for forecasting task v1.0 version.\n\n<div align=\"center\"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/TEMPO.png width=80% /></div>\n\n## \u23f3 Upcoming Features\n\n- [\u2705] Parallel pre-training pipeline\n- [] Probabilistic forecasting\n- [] Multimodal dataset\n- [] Multimodal pre-training script\n\n\n## \ud83d\ude80 News\n\n\n- **Oct 2024**: \ud83d\ude80 We've streamlined our code structure, enabling users to download the pre-trained model and perform zero-shot inference with a single line of code! Check out our [demo](./run_TEMPO_demo.py) for more details. Our model's download count on HuggingFace is now trackable!\n\n- **Jun 2024**: \ud83d\ude80 We added demos for reproducing zero-shot experiments in [Colab](https://colab.research.google.com/drive/11qGpT7H1JMaTlMlm9WtHFZ3_cJz7p-og?usp=sharing).  We also added the demo of building the customer dataset and directly do the inference via our pre-trained foundation model: [Colab](https://colab.research.google.com/drive/1ZpWbK0L6mq1pav2yDqOuORo4rHbv80-A?usp=sharing)\n- **May 2024**: \ud83d\ude80 TEMPO has launched a GUI-based online [demo](https://4171a8a7484b3e9148.gradio.live/), allowing users to directly interact with our foundation model!\n- **May 2024**: \ud83d\ude80 TEMPO published the 80M pretrained foundation model in [HuggingFace](https://huggingface.co/Melady/TEMPO)!\n- **May 2024**: \ud83e\uddea We added the code for pretraining and inference TEMPO models.  You can find a pre-training script demo in [this folder](./scripts/etth2.sh). We also added [a script](./scripts/etth2_test.sh) for the inference demo.\n\n- **Mar 2024**: \ud83d\udcc8  Released [TETS dataset](https://drive.google.com/file/d/1Hu2KFj0kp4kIIpjbss2ciLCV_KiBreoJ/view?usp=drive_link) from [S&P 500](https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview) used in multimodal experiments in TEMPO. \n- **Mar 2024**: \ud83e\uddea TEMPO published the project [code](https://github.com/DC-research/TEMPO) and the pre-trained checkpoint [online](https://drive.google.com/file/d/11Ho_seP9NGh-lQCyBkvQhAQFy_3XVwKp/view?usp=drive_link)! \n- **Jan 2024**: \ud83d\ude80 TEMPO [paper](https://openreview.net/pdf?id=YH5w12OUuU) get accepted by ICLR!\n- **Oct 2023**: \ud83d\ude80 TEMPO [paper](https://arxiv.org/pdf/2310.04948) released on Arxiv!\n\n## Build the environment\n\n```\nconda create -n tempo python=3.8\n```\n```\nconda activate tempo\n```\n```\npip install timeagi\n```\n\n## Script Demo\n\nA streamlining example showing how to perform forecasting using TEMPO:\n\n```python\n# Third-party library imports\nimport numpy as np\nimport torch\nfrom numpy.random import choice\n# Local imports\nfrom models.TEMPO import TEMPO\n\n\nmodel = TEMPO.load_pretrained_model(\n        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'),\n        repo_id = \"Melady/TEMPO\",\n        filename = \"TEMPO-80M_v1.pth\",\n        cache_dir = \"./checkpoints/TEMPO_checkpoints\"  \n)\n\ninput_data = np.random.rand(336)    # Random input data\nwith torch.no_grad():\n        predicted_values = model.predict(input_data, pred_length=96)\nprint(\"Predicted values:\")\nprint(predicted_values)\n\n```\n\n## Demos\n\n### 1. Reproducing zero-shot experiments on ETTh2:\n\nPlease try to reproduc the zero-shot experiments on ETTh2 [[here on Colab]](https://colab.research.google.com/drive/11qGpT7H1JMaTlMlm9WtHFZ3_cJz7p-og?usp=sharing).\n\n### 2. Zero-shot experiments on customer dataset:\n\nWe use the following Colab page to show the demo of building the customer dataset and directly do the inference via our pre-trained foundation model: [[Colab]](https://colab.research.google.com/drive/1ZpWbK0L6mq1pav2yDqOuORo4rHbv80-A?usp=sharing)\n\n### 3. Online demo:\n\nPlease try our foundation model demo [[here]](https://4171a8a7484b3e9148.gradio.live).\n\n<div align=\"center\"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/TEMPO_demo.jpg width=80% /></div>\n\n## Practice on your end\n\nWe also updated our models on HuggingFace: [[Melady/TEMPO]](https://huggingface.co/Melady/TEMPO).\n\n\n\n### Get Data\n\n   Download the data from [[Google Drive]](https://drive.google.com/drive/folders/13Cg1KYOlzM5C7K8gK8NfC-F3EYxkM3D2?usp=sharing) or [[Baidu Drive]](https://pan.baidu.com/s/1r3KhGd0Q9PJIUZdfEYoymg?pwd=i9iy), and place the downloaded data in the folder`./dataset`. You can also download the STL results from [[Google Drive]](https://drive.google.com/file/d/1gWliIGDDSi2itUAvYaRgACru18j753Kw/view?usp=sharing), and place the downloaded data in the folder`./stl`.\n\n### Run TEMPO\n\n### Pre-Training Stage\n```\nbash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather].sh\n```\n\n### Test/ Inference Stage\n\nAfter training, we can test TEMPO model under the zero-shot setting:\n\n```\nbash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather]_test.sh\n```\n\n<div align=\"center\"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/results.jpg width=90% /></div>\n\n\n## Pre-trained Models\n\nYou can download the pre-trained model from [[Google Drive]](https://drive.google.com/file/d/11Ho_seP9NGh-lQCyBkvQhAQFy_3XVwKp/view?usp=drive_link) and then run the test script for fun.\n\n## TETS dataset\n\nHere is the prompts use to generate the coresponding textual informaton of time series via [[OPENAI ChatGPT-3.5 API]](https://platform.openai.com/docs/guides/text-generation)\n\n<div align=\"center\"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/TETS_prompt.png width=80% /></div>\n\nThe time series data are come from [[S&P 500]](https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview). Here is the EBITDA case for one company from the dataset:\n\n\n<div align=\"center\"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics/Company1_ebitda_summary.png width=80% /></div>\n\nExample of generated contextual information for the Company marked above:\n\n<div align=\"center\"><img src=https://raw.githubusercontent.com/DC-research/TEMPO/main/tempo/pics//Company1_ebitda_summary_words.jpg width=80% /></div>\n\n\n\n\nYou can download the processed data with text embedding from GPT2 from: [[TETS]](https://drive.google.com/file/d/1Hu2KFj0kp4kIIpjbss2ciLCV_KiBreoJ/view?usp=drive_link\n).\n\n## Contact\nFeel free to connect DefuCao@USC.EDU / YanLiu.CS@USC.EDU if you\u2019re interested in applying TEMPO to your real-world application.\n\n## Cite our work\n```\n@inproceedings{\ncao2024tempo,\ntitle={{TEMPO}: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting},\nauthor={Defu Cao and Furong Jia and Sercan O Arik and Tomas Pfister and Yixiang Zheng and Wen Ye and Yan Liu},\nbooktitle={The Twelfth International Conference on Learning Representations},\nyear={2024},\nurl={https://openreview.net/forum?id=YH5w12OUuU}\n}\n```\n\n```\n@article{\n   Jia_Wang_Zheng_Cao_Liu_2024, \n   title={GPT4MTS: Prompt-based Large Language Model for Multimodal Time-series Forecasting}, \n   volume={38}, \n   url={https://ojs.aaai.org/index.php/AAAI/article/view/30383}, \n   DOI={10.1609/aaai.v38i21.30383}, \n   number={21}, \n   journal={Proceedings of the AAAI Conference on Artificial Intelligence}, \n   author={Jia, Furong and Wang, Kevin and Zheng, Yixiang and Cao, Defu and Liu, Yan}, \n   year={2024}, month={Mar.}, pages={23343-23351} \n   }\n```\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Time Series Foundation Model - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting",
    "version": "0.0.1",
    "project_urls": {
        "Bug Reports": "https://github.com/DC-research/TEMPO/issues",
        "Homepage": "https://github.com/DC-research/TEMPO",
        "Source": "https://github.com/DC-research/TEMPO"
    },
    "split_keywords": [
        "time-series",
        " ml",
        " llm"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "57cecd34ba991d8158788ba3d348c94e287357a60bcc7d2ec58aecc4ee6ab980",
                "md5": "bfb87c5144f56bbe2d433f9cf8daad05",
                "sha256": "fceab49e49606796fbe1808f4ac12e50da481d0bd77424f732abfa9fdccac95b"
            },
            "downloads": -1,
            "filename": "timeagi-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bfb87c5144f56bbe2d433f9cf8daad05",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4,>=3.7.2",
            "size": 117773,
            "upload_time": "2024-11-30T05:06:20",
            "upload_time_iso_8601": "2024-11-30T05:06:20.016094Z",
            "url": "https://files.pythonhosted.org/packages/57/ce/cd34ba991d8158788ba3d348c94e287357a60bcc7d2ec58aecc4ee6ab980/timeagi-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "eb0b09bfb453dd74668acaa6c6ca3e022a54df8eed0f2571a427e26e3c06e86f",
                "md5": "dc3f1940b97d1d2cc771640955733d50",
                "sha256": "82426e2f7474e50a699fe467906f5c5b42b0fef41a62e2f5acf6a688bcf18f23"
            },
            "downloads": -1,
            "filename": "timeagi-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "dc3f1940b97d1d2cc771640955733d50",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4,>=3.7.2",
            "size": 92867,
            "upload_time": "2024-11-30T05:06:40",
            "upload_time_iso_8601": "2024-11-30T05:06:40.666668Z",
            "url": "https://files.pythonhosted.org/packages/eb/0b/09bfb453dd74668acaa6c6ca3e022a54df8eed0f2571a427e26e3c06e86f/timeagi-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-30 05:06:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "DC-research",
    "github_project": "TEMPO",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "timeagi"
}
        
Elapsed time: 1.16109s