Name | timeseries-performance-calculator JSON |
Version |
0.3.3
JSON |
| download |
home_page | None |
Summary | A Python package for calculating and analyzing time series performance metrics |
upload_time | 2025-07-31 04:31:53 |
maintainer | None |
docs_url | None |
author | June Young Park |
requires_python | >=3.7 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Time Series Performance Calculator
A Python package for calculating and analyzing time series performance metrics for financial data.
## Features
- Calculate annualized returns (CAGR method and days-based method)
- Generate monthly returns tables
- Create monthly cumulative returns tables
- Calculate relative performance against benchmarks
- Compute maximum drawdown metrics
- Calculate annualized volatility
- Generate performance tables with customizable formatting options
## Installation
```bash
pip install timeseries-performance-calculator
```
Or install from source:
```bash
git clone https://github.com/nailen1/timeseries-performance-calculator.git
cd timeseries-performance-calculator
pip install -e .
```
## Usage
```python
# Code examples will be updated in future releases.
# Detailed usage examples and documentation will be provided in upcoming versions.
```
> **Note**: This package is currently under development. More detailed usage examples and documentation will be provided in future updates.
## Dependencies
- fund_insight_engine
- universal_timeseries_transformer
- string_date_controller
- canonical_transformer
## License
MIT
## Author
June Young Park (juneyoungpaak@gmail.com)
Raw data
{
"_id": null,
"home_page": null,
"name": "timeseries-performance-calculator",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": null,
"author": "June Young Park",
"author_email": "juneyoungpaak@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/c2/28/9d4ca910332489ffd98f2514c19c5633ef8f24bbe171364a4bc322134e1f/timeseries_performance_calculator-0.3.3.tar.gz",
"platform": null,
"description": "# Time Series Performance Calculator\n\nA Python package for calculating and analyzing time series performance metrics for financial data.\n\n## Features\n\n- Calculate annualized returns (CAGR method and days-based method)\n- Generate monthly returns tables\n- Create monthly cumulative returns tables\n- Calculate relative performance against benchmarks\n- Compute maximum drawdown metrics\n- Calculate annualized volatility\n- Generate performance tables with customizable formatting options\n\n## Installation\n\n```bash\npip install timeseries-performance-calculator\n```\n\nOr install from source:\n\n```bash\ngit clone https://github.com/nailen1/timeseries-performance-calculator.git\ncd timeseries-performance-calculator\npip install -e .\n```\n\n## Usage\n\n```python\n# Code examples will be updated in future releases.\n# Detailed usage examples and documentation will be provided in upcoming versions.\n```\n\n> **Note**: This package is currently under development. More detailed usage examples and documentation will be provided in future updates.\n\n## Dependencies\n\n- fund_insight_engine\n- universal_timeseries_transformer\n- string_date_controller\n- canonical_transformer\n\n## License\n\nMIT\n\n## Author\n\nJune Young Park (juneyoungpaak@gmail.com)\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python package for calculating and analyzing time series performance metrics",
"version": "0.3.3",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "b1c73e5ff26c2a4e7a1b7fabae274c5f5c78325e6dce07b10f58c16a024a1159",
"md5": "e8acb478a6f77baabb142f302a011453",
"sha256": "27a08a3ef5b47123a02ed3511272106baabd48e97fdb263e7a051aea3490d6a1"
},
"downloads": -1,
"filename": "timeseries_performance_calculator-0.3.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e8acb478a6f77baabb142f302a011453",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 27603,
"upload_time": "2025-07-31T04:31:52",
"upload_time_iso_8601": "2025-07-31T04:31:52.026604Z",
"url": "https://files.pythonhosted.org/packages/b1/c7/3e5ff26c2a4e7a1b7fabae274c5f5c78325e6dce07b10f58c16a024a1159/timeseries_performance_calculator-0.3.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c2289d4ca910332489ffd98f2514c19c5633ef8f24bbe171364a4bc322134e1f",
"md5": "c8f4e777b867d0c6a8bd9463064d67d3",
"sha256": "fd2945cc26b4b5f826b1b30de77f95cfb40dfac69ed8f44544bc571f98a5a7d2"
},
"downloads": -1,
"filename": "timeseries_performance_calculator-0.3.3.tar.gz",
"has_sig": false,
"md5_digest": "c8f4e777b867d0c6a8bd9463064d67d3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 15284,
"upload_time": "2025-07-31T04:31:53",
"upload_time_iso_8601": "2025-07-31T04:31:53.366182Z",
"url": "https://files.pythonhosted.org/packages/c2/28/9d4ca910332489ffd98f2514c19c5633ef8f24bbe171364a4bc322134e1f/timeseries_performance_calculator-0.3.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-31 04:31:53",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "timeseries-performance-calculator"
}