timeseries-performance-calculator


Nametimeseries-performance-calculator JSON
Version 0.3.3 PyPI version JSON
download
home_pageNone
SummaryA Python package for calculating and analyzing time series performance metrics
upload_time2025-07-31 04:31:53
maintainerNone
docs_urlNone
authorJune Young Park
requires_python>=3.7
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Time Series Performance Calculator

A Python package for calculating and analyzing time series performance metrics for financial data.

## Features

- Calculate annualized returns (CAGR method and days-based method)
- Generate monthly returns tables
- Create monthly cumulative returns tables
- Calculate relative performance against benchmarks
- Compute maximum drawdown metrics
- Calculate annualized volatility
- Generate performance tables with customizable formatting options

## Installation

```bash
pip install timeseries-performance-calculator
```

Or install from source:

```bash
git clone https://github.com/nailen1/timeseries-performance-calculator.git
cd timeseries-performance-calculator
pip install -e .
```

## Usage

```python
# Code examples will be updated in future releases.
# Detailed usage examples and documentation will be provided in upcoming versions.
```

> **Note**: This package is currently under development. More detailed usage examples and documentation will be provided in future updates.

## Dependencies

- fund_insight_engine
- universal_timeseries_transformer
- string_date_controller
- canonical_transformer

## License

MIT

## Author

June Young Park (juneyoungpaak@gmail.com)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "timeseries-performance-calculator",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "June Young Park",
    "author_email": "juneyoungpaak@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c2/28/9d4ca910332489ffd98f2514c19c5633ef8f24bbe171364a4bc322134e1f/timeseries_performance_calculator-0.3.3.tar.gz",
    "platform": null,
    "description": "# Time Series Performance Calculator\n\nA Python package for calculating and analyzing time series performance metrics for financial data.\n\n## Features\n\n- Calculate annualized returns (CAGR method and days-based method)\n- Generate monthly returns tables\n- Create monthly cumulative returns tables\n- Calculate relative performance against benchmarks\n- Compute maximum drawdown metrics\n- Calculate annualized volatility\n- Generate performance tables with customizable formatting options\n\n## Installation\n\n```bash\npip install timeseries-performance-calculator\n```\n\nOr install from source:\n\n```bash\ngit clone https://github.com/nailen1/timeseries-performance-calculator.git\ncd timeseries-performance-calculator\npip install -e .\n```\n\n## Usage\n\n```python\n# Code examples will be updated in future releases.\n# Detailed usage examples and documentation will be provided in upcoming versions.\n```\n\n> **Note**: This package is currently under development. More detailed usage examples and documentation will be provided in future updates.\n\n## Dependencies\n\n- fund_insight_engine\n- universal_timeseries_transformer\n- string_date_controller\n- canonical_transformer\n\n## License\n\nMIT\n\n## Author\n\nJune Young Park (juneyoungpaak@gmail.com)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Python package for calculating and analyzing time series performance metrics",
    "version": "0.3.3",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b1c73e5ff26c2a4e7a1b7fabae274c5f5c78325e6dce07b10f58c16a024a1159",
                "md5": "e8acb478a6f77baabb142f302a011453",
                "sha256": "27a08a3ef5b47123a02ed3511272106baabd48e97fdb263e7a051aea3490d6a1"
            },
            "downloads": -1,
            "filename": "timeseries_performance_calculator-0.3.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e8acb478a6f77baabb142f302a011453",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 27603,
            "upload_time": "2025-07-31T04:31:52",
            "upload_time_iso_8601": "2025-07-31T04:31:52.026604Z",
            "url": "https://files.pythonhosted.org/packages/b1/c7/3e5ff26c2a4e7a1b7fabae274c5f5c78325e6dce07b10f58c16a024a1159/timeseries_performance_calculator-0.3.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c2289d4ca910332489ffd98f2514c19c5633ef8f24bbe171364a4bc322134e1f",
                "md5": "c8f4e777b867d0c6a8bd9463064d67d3",
                "sha256": "fd2945cc26b4b5f826b1b30de77f95cfb40dfac69ed8f44544bc571f98a5a7d2"
            },
            "downloads": -1,
            "filename": "timeseries_performance_calculator-0.3.3.tar.gz",
            "has_sig": false,
            "md5_digest": "c8f4e777b867d0c6a8bd9463064d67d3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 15284,
            "upload_time": "2025-07-31T04:31:53",
            "upload_time_iso_8601": "2025-07-31T04:31:53.366182Z",
            "url": "https://files.pythonhosted.org/packages/c2/28/9d4ca910332489ffd98f2514c19c5633ef8f24bbe171364a4bc322134e1f/timeseries_performance_calculator-0.3.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-31 04:31:53",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "timeseries-performance-calculator"
}
        
Elapsed time: 0.53323s