tiny-gptv


Nametiny-gptv JSON
Version 0.0.5 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/TinyGPTV
SummaryTiny GPTV - Pytorch
upload_time2023-12-31 04:19:54
maintainer
docs_urlNone
authorKye Gomez
requires_python>=3.6,<4.0
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# TinyGPTV
Simple Implementation of TinyGPTV in super simple Zeta lego blocks. Here all the modules from figure 2 are implemented in Zeta and Pytorch.

The flow is the following:
x -> skip connection -> layer norm -> lora -> mha + lora -> residual_rms_norm -> original_skip_connection -> mlp + rms norm


## Install
`pip3 install tiny-gptv`


## Usage

### TinyGPTVBlock, Figure3 (c):
- Layernorm
- MHA
- Lora
- QK Norm
- RMS Norm
- MLP


```python
import torch
from tiny_gptv.blocks import TinyGPTVBlock

# Random tensor, replace with your input data
x = torch.rand(2, 8, 512)

# TinyGPTVBlock
block = TinyGPTVBlock(512, 8, depth=10)

# Print the block
print(block)

# Forward pass
out = block(x)

# Print the output shape
print(out.shape)


```

### Figure3 (b) Lora Module for LLMS Block
- MHA,
- Lora,
- Normalization,
- MLP
- Skip connection
- Split then add

```python
import torch
from tiny_gptv import LoraMHA

x = torch.rand(2, 8, 512)
block = LoraMHA(512, 8)
out = block(x)
print(out.shape)

```


# Citation

```bibtex
@misc{yuan2023tinygptv,
    title={TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones}, 
    author={Zhengqing Yuan and Zhaoxu Li and Lichao Sun},
    year={2023},
    eprint={2312.16862},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

```

# License
MIT
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/TinyGPTV",
    "name": "tiny-gptv",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6,<4.0",
    "maintainer_email": "",
    "keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/39/d4/b88b55f804377ec5a1045df401f9aea5cae5412fd383e21593e7f27cf32e/tiny_gptv-0.0.5.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# TinyGPTV\nSimple Implementation of TinyGPTV in super simple Zeta lego blocks. Here all the modules from figure 2 are implemented in Zeta and Pytorch.\n\nThe flow is the following:\nx -> skip connection -> layer norm -> lora -> mha + lora -> residual_rms_norm -> original_skip_connection -> mlp + rms norm\n\n\n## Install\n`pip3 install tiny-gptv`\n\n\n## Usage\n\n### TinyGPTVBlock, Figure3 (c):\n- Layernorm\n- MHA\n- Lora\n- QK Norm\n- RMS Norm\n- MLP\n\n\n```python\nimport torch\nfrom tiny_gptv.blocks import TinyGPTVBlock\n\n# Random tensor, replace with your input data\nx = torch.rand(2, 8, 512)\n\n# TinyGPTVBlock\nblock = TinyGPTVBlock(512, 8, depth=10)\n\n# Print the block\nprint(block)\n\n# Forward pass\nout = block(x)\n\n# Print the output shape\nprint(out.shape)\n\n\n```\n\n### Figure3 (b) Lora Module for LLMS Block\n- MHA,\n- Lora,\n- Normalization,\n- MLP\n- Skip connection\n- Split then add\n\n```python\nimport torch\nfrom tiny_gptv import LoraMHA\n\nx = torch.rand(2, 8, 512)\nblock = LoraMHA(512, 8)\nout = block(x)\nprint(out.shape)\n\n```\n\n\n# Citation\n\n```bibtex\n@misc{yuan2023tinygptv,\n    title={TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones}, \n    author={Zhengqing Yuan and Zhaoxu Li and Lichao Sun},\n    year={2023},\n    eprint={2312.16862},\n    archivePrefix={arXiv},\n    primaryClass={cs.CV}\n}\n\n```\n\n# License\nMIT",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Tiny GPTV - Pytorch",
    "version": "0.0.5",
    "project_urls": {
        "Documentation": "https://github.com/kyegomez/TinyGPTV",
        "Homepage": "https://github.com/kyegomez/TinyGPTV",
        "Repository": "https://github.com/kyegomez/TinyGPTV"
    },
    "split_keywords": [
        "artificial intelligence",
        "deep learning",
        "optimizers",
        "prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5f4f6012d8709c2795670cde0d90d4b8d20aba7363e4be7979843804a02f7c5d",
                "md5": "8b67b5d61014b8f4d264eb3553f406e7",
                "sha256": "83b08d1f178211348d6e6c2b2e24ba38d3cad4062eddd35da2d75581faea1403"
            },
            "downloads": -1,
            "filename": "tiny_gptv-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8b67b5d61014b8f4d264eb3553f406e7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6,<4.0",
            "size": 4426,
            "upload_time": "2023-12-31T04:19:52",
            "upload_time_iso_8601": "2023-12-31T04:19:52.905967Z",
            "url": "https://files.pythonhosted.org/packages/5f/4f/6012d8709c2795670cde0d90d4b8d20aba7363e4be7979843804a02f7c5d/tiny_gptv-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "39d4b88b55f804377ec5a1045df401f9aea5cae5412fd383e21593e7f27cf32e",
                "md5": "ba2b964f4a3c3bec60985054236f532b",
                "sha256": "659f25aec9d149292e99d5ea812fbbf1c2f7ca6e8b94691f5287b6cf00fd7cd8"
            },
            "downloads": -1,
            "filename": "tiny_gptv-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "ba2b964f4a3c3bec60985054236f532b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6,<4.0",
            "size": 4628,
            "upload_time": "2023-12-31T04:19:54",
            "upload_time_iso_8601": "2023-12-31T04:19:54.508934Z",
            "url": "https://files.pythonhosted.org/packages/39/d4/b88b55f804377ec5a1045df401f9aea5cae5412fd383e21593e7f27cf32e/tiny_gptv-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-31 04:19:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "TinyGPTV",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "tiny-gptv"
}
        
Elapsed time: 0.26638s