Name | tinygp JSON |
Version |
0.3.0
JSON |
| download |
home_page | |
Summary | The tiniest of Gaussian Process libraries |
upload_time | 2024-01-05 21:44:31 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.9 |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<p align="center">
<img src="https://raw.githubusercontent.com/dfm/tinygp/main/docs/_static/zap.png" width="50"><br>
<strong>tinygp</strong><br>
<i>the tiniest of Gaussian Process libraries</i>
<br>
<br>
<a href="https://github.com/dfm/tinygp/actions/workflows/tests.yml">
<img alt="GitHub Workflow Status" src="https://img.shields.io/github/actions/workflow/status/dfm/tinygp/tests.yml?branch=main">
</a>
<a href="https://tinygp.readthedocs.io">
<img alt="Read the Docs" src="https://img.shields.io/readthedocs/tinygp">
</a>
<a href="https://doi.org/10.5281/zenodo.6389737">
<img alt="Zenodo DOI" src="https://zenodo.org/badge/DOI/10.5281/zenodo.6389737.svg">
</a>
</p>
`tinygp` is an extremely lightweight library for building Gaussian Process (GP)
models in Python, built on top of [`jax`](https://github.com/google/jax). It has
a [nice interface][api-ref], and it's [pretty fast][benchmarks]. Thanks to
`jax`, `tinygp` supports things like GPU acceleration and automatic
differentiation.
Check out the docs for more info: [tinygp.readthedocs.io][docs]
[api-ref]: https://tinygp.readthedocs.io/en/latest/api/index.html
[benchmarks]: https://tinygp.readthedocs.io/en/latest/benchmarks.html
[docs]: https://tinygp.readthedocs.io
Raw data
{
"_id": null,
"home_page": "",
"name": "tinygp",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": "",
"keywords": "",
"author": "",
"author_email": "Dan Foreman-Mackey <foreman.mackey@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/82/38/50b8d28c6f2340f6f9e335996abd97620cd45f48feac7dcc403e7119ec00/tinygp-0.3.0.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <img src=\"https://raw.githubusercontent.com/dfm/tinygp/main/docs/_static/zap.png\" width=\"50\"><br>\n <strong>tinygp</strong><br>\n <i>the tiniest of Gaussian Process libraries</i>\n <br>\n <br>\n <a href=\"https://github.com/dfm/tinygp/actions/workflows/tests.yml\">\n <img alt=\"GitHub Workflow Status\" src=\"https://img.shields.io/github/actions/workflow/status/dfm/tinygp/tests.yml?branch=main\">\n </a>\n <a href=\"https://tinygp.readthedocs.io\">\n <img alt=\"Read the Docs\" src=\"https://img.shields.io/readthedocs/tinygp\">\n </a>\n <a href=\"https://doi.org/10.5281/zenodo.6389737\">\n <img alt=\"Zenodo DOI\" src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.6389737.svg\">\n </a>\n</p>\n\n`tinygp` is an extremely lightweight library for building Gaussian Process (GP)\nmodels in Python, built on top of [`jax`](https://github.com/google/jax). It has\na [nice interface][api-ref], and it's [pretty fast][benchmarks]. Thanks to\n`jax`, `tinygp` supports things like GPU acceleration and automatic\ndifferentiation.\n\nCheck out the docs for more info: [tinygp.readthedocs.io][docs]\n\n[api-ref]: https://tinygp.readthedocs.io/en/latest/api/index.html\n[benchmarks]: https://tinygp.readthedocs.io/en/latest/benchmarks.html\n[docs]: https://tinygp.readthedocs.io\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "The tiniest of Gaussian Process libraries",
"version": "0.3.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "febd16f52a35f6e5adb10e62a5303860a8d1370f75a9e347ce3eb129fb7bc5e0",
"md5": "c1ebb1410baa383dc3db06ed580bc7cb",
"sha256": "e98fd15cb358978d1211a103203bdc82d692932a235bcc14f3d67d4c86154b75"
},
"downloads": -1,
"filename": "tinygp-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c1ebb1410baa383dc3db06ed580bc7cb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 44046,
"upload_time": "2024-01-05T21:44:29",
"upload_time_iso_8601": "2024-01-05T21:44:29.196245Z",
"url": "https://files.pythonhosted.org/packages/fe/bd/16f52a35f6e5adb10e62a5303860a8d1370f75a9e347ce3eb129fb7bc5e0/tinygp-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "823850b8d28c6f2340f6f9e335996abd97620cd45f48feac7dcc403e7119ec00",
"md5": "eb69f00be4df0d14968ea53aa3224a72",
"sha256": "ac5474b20bf6bdd868d48a43b425bc62eb177747a329190347bd4f13af0112c4"
},
"downloads": -1,
"filename": "tinygp-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "eb69f00be4df0d14968ea53aa3224a72",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 176154,
"upload_time": "2024-01-05T21:44:31",
"upload_time_iso_8601": "2024-01-05T21:44:31.055619Z",
"url": "https://files.pythonhosted.org/packages/82/38/50b8d28c6f2340f6f9e335996abd97620cd45f48feac7dcc403e7119ec00/tinygp-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-05 21:44:31",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "tinygp"
}