tinyms


Nametinyms JSON
Version 0.3.2 PyPI version JSON
download
home_pagehttps://tinyms.readthedocs.io/en/latest/
SummaryTinyMS is an Easy-to-Use deep learning development toolkit.
upload_time2023-02-10 03:27:52
maintainer
docs_urlNone
authorThe TinyMS Authors
requires_python>=3.7
licenseApache 2.0
keywords machine learning toolkit
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center"><img src="https://github.com/tinyms-ai/tinyms/raw/main/docs/pic/tinyms-logo.png" alt="TinyMS logo" width="300"/></p>

# TinyMS

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/tinyms.svg)](https://pypi.org/project/tinyms)
[![PyPI](https://badge.fury.io/py/tinyms.svg)](https://badge.fury.io/py/tinyms)
[![Downloads](https://pepy.tech/badge/tinyms)](https://pepy.tech/project/tinyms)
[![DockerHub](https://img.shields.io/docker/pulls/tinyms/tinyms.svg)](https://hub.docker.com/r/tinyms/tinyms)
[![Build Status](https://github.com/tinyms-ai/tinyms/actions/workflows/install_and_test.yml/badge.svg?branch=main)](https://github.com/tinyms-ai/tinyms/actions/workflows/install_and_test.yml)
[![Documentation Status](https://readthedocs.org/projects/tinyms/badge/?versoin=latest)](https://readthedocs.org/projects/tinyms)
[![Releases](https://img.shields.io/github/release/tinyms-ai/tinyms/all.svg?style=flat-square)](https://github.com/tinyms-ai/tinyms/releases)
[![LICENSE](https://img.shields.io/github/license/tinyms-ai/tinyms.svg?style=flat-square)](https://github.com/tinyms-ai/tinyms/blob/main/LICENSE)
[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://join.slack.com/t/mindspore/shared_invite/zt-dgk65rli-3ex4xvS4wHX7UDmsQmfu8w)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](https://github.com/tinyms-ai/tinyms/pulls)

English | [查看中文](./README_CN.md)

TinyMS is an Easy-to-Use deep learning framework development toolkit based on [MindSpore](https://www.mindspore.cn/en/), designed to provide quick-start guidelines for machine learning beginners.

<p align="center"><img src="docs/pic/tinyms-architecture.png" alt="TinyMS Architecture" width="800" /></p>

## Installation

| Distribution | Version | Command |
| :----------- | :------ | :------ |
| PyPI | x.y.z | `pip install tinyms==x.y.z` |
|  | latest | `pip install git+https://github.com/tinyms-ai/tinyms.git` |
| Docker | x.y.z | `docker pull tinyms==x.y.z` |
|  | latest | - |

> **NOTICE:** The `x.y.z` version shown above should be replaced with the real version number.

Please checkout the [install document](https://tinyms.readthedocs.io/en/latest/quickstart/install.html) to quickly install or upgrade TinyMS project.

## Quick start

Have no idea what to do with TinyMS❓ See the [Quick Start](https://tinyms.readthedocs.io/en/latest/quickstart/quickstart_in_one_minute.html) to implement the image classification application in one minutes❗

Besides, here are some use cases listed to demonstrate how TinyMS simplifies the code flow for users.

### Data loading and preprocess

<table>
<tr>
<td>

```python
from tinyms.data import MnistDataset, download_dataset
from tinyms.vision import mnist_transform

data_path = download_dataset('mnist')
mnist_ds = MnistDataset(data_path, shuffle=True)
mnist_ds = mnist_transform.apply_ds(mnist_ds)
```

</td>
</tr>
</table>

### Network construction

<table>
<tr>
<td>

```python
from tinyms.model import lenet5

net = lenet5(class_num=10)
```

</td>
</tr>
</table>

### Model train/evaluation

<table>
<tr>
<td>

```python
from tinyms.model import Model

model = Model(net)
model.compile(loss_fn=net_loss, optimizer=net_opt, metrics=net_metrics)
model.train(epoch_size, train_dataset)
model.save_checkpoint('./checkpoint_lenet.ckpt')
···
model.load_checkpoint('./checkpoint_lenet.ckpt')
model.eval(eval_dataset)
```

</td>
</tr>
</table>

### Model prediction

<table>
<tr>
<td>

```python
from PIL import Image
import tinyms as ts
from tinyms.model import Model, lenet5
from tinyms.vision import mnist_transform

img = Image.open(img_path)
img = mnist_transform(img)

net = lenet5(class_num=10)
model = Model(net)
model.load_checkpoint('./checkpoint_lenet.ckpt')

input = ts.expand_dims(ts.array(img), 0)
res = model.predict(input).asnumpy()
print("The label is:", mnist_transform.postprocess(res))
```

</td>
</tr>
</table>

## API documentation

If you are interested in learning TinyMS API, please find TinyMS Python API in [API Documentation](https://tinyms.readthedocs.io/en/latest/tinyms/tinyms.html).

## Tutorial

For a more detailed step-by-step video tutorial, please refer to the following website.

| Episode | Title | Content | Docs | Status | Update Time |
| ------- | ----- | ------- | ---- | ------ | ----------- |
| EP01    | [How to learn Deep Learning? The Most Efficient Way For Beginners!](https://www.bilibili.com/video/BV1MB4y1P79S) | Teacher's profile+DeepLearning Course Introduction | - | Published | 2021.3.30 |
| EP02    | [How we teach computers to understand pictures? Three Ways to Install TinyMS](https://www.bilibili.com/video/BV18v41187fX) | It uncovers the magic of computer vision + three ways to install TinyMS (Ubuntu, Win10, Docker) | [TinyMS Installation For Beginners](https://tinyms.readthedocs.io/zh_CN/latest/quickstart/install.html) | Published | 2020.3.31 |
| EP03    | [Learn Shell Script in 30 Minutes](https://www.bilibili.com/video/BV1vy4y1b7jh) | It covers the essential concepts such as using variables, basic operators, loops & functions and so on. It also gives you an insight by scaling down some real-time scenarios and demonstrating them using the docker container. | [Learn Shell Script in 30 Minutes (doc)](https://github.com/tinyms-ai/tinyms/blob/main/tutorials/EP03/30min速成Shell脚本.md) | Published | 2020.4.1 |
| EP04    | [Learn Python in 30 Minutes(Part I.)](https://www.bilibili.com/video/BV1Tp4y1b7UG?spm_id_from=333.999.0.0) | Python installation, basic syntax, primitive data types and operators| [Learn Python in 30 Minutes](https://github.com/tinyms-ai/tinyms/blob/main/tutorials/EP04/Quickstart-for-Python-in-30-minutes.md) | Published | 2021.4.23    |
| EP05    | [Learn Python in 30 Minutes(Part II.)](https://www.bilibili.com/video/BV1XS4y1Z7yp?spm_id_from=333.999.0.0) | Python conditional statements, loop statements, iterators, generators, functions, class, module, advanced usages, and several most commonly used Python libraries in deep learning | [Learn Python in 30 Minutes](https://github.com/tinyms-ai/tinyms/blob/main/tutorials/EP04/Quickstart-for-Python-in-30-minutes.md) | Published | 2022.1.10    |

## Community

For any developers who are not familiar with how TinyMS community works, please find the [Contributing Guidelines](https://tinyms.readthedocs.io/en/latest/community/contributing.html) to get started.

## Release Notes

The release notes, see our [RELEASE](https://github.com/tinyms-ai/tinyms/blob/main/RELEASE.md).

## License

[Apache License 2.0](https://github.com/tinyms-ai/tinyms/blob/main/LICENSE)



            

Raw data

            {
    "_id": null,
    "home_page": "https://tinyms.readthedocs.io/en/latest/",
    "name": "tinyms",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "machine learning toolkit",
    "author": "The TinyMS Authors",
    "author_email": "simple_hlw@163.com",
    "download_url": "https://files.pythonhosted.org/packages/fe/4a/2127a2c064ca36ed5b8bd46d456c1f69cb9186d555ee4f47b351225ce791/tinyms-0.3.2.tar.gz",
    "platform": null,
    "description": "<p align=\"center\"><img src=\"https://github.com/tinyms-ai/tinyms/raw/main/docs/pic/tinyms-logo.png\" alt=\"TinyMS logo\" width=\"300\"/></p>\n\n# TinyMS\n\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/tinyms.svg)](https://pypi.org/project/tinyms)\n[![PyPI](https://badge.fury.io/py/tinyms.svg)](https://badge.fury.io/py/tinyms)\n[![Downloads](https://pepy.tech/badge/tinyms)](https://pepy.tech/project/tinyms)\n[![DockerHub](https://img.shields.io/docker/pulls/tinyms/tinyms.svg)](https://hub.docker.com/r/tinyms/tinyms)\n[![Build Status](https://github.com/tinyms-ai/tinyms/actions/workflows/install_and_test.yml/badge.svg?branch=main)](https://github.com/tinyms-ai/tinyms/actions/workflows/install_and_test.yml)\n[![Documentation Status](https://readthedocs.org/projects/tinyms/badge/?versoin=latest)](https://readthedocs.org/projects/tinyms)\n[![Releases](https://img.shields.io/github/release/tinyms-ai/tinyms/all.svg?style=flat-square)](https://github.com/tinyms-ai/tinyms/releases)\n[![LICENSE](https://img.shields.io/github/license/tinyms-ai/tinyms.svg?style=flat-square)](https://github.com/tinyms-ai/tinyms/blob/main/LICENSE)\n[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://join.slack.com/t/mindspore/shared_invite/zt-dgk65rli-3ex4xvS4wHX7UDmsQmfu8w)\n[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](https://github.com/tinyms-ai/tinyms/pulls)\n\nEnglish | [\u67e5\u770b\u4e2d\u6587](./README_CN.md)\n\nTinyMS is an Easy-to-Use deep learning framework development toolkit based on [MindSpore](https://www.mindspore.cn/en/), designed to provide quick-start guidelines for machine learning beginners.\n\n<p align=\"center\"><img src=\"docs/pic/tinyms-architecture.png\" alt=\"TinyMS Architecture\" width=\"800\" /></p>\n\n## Installation\n\n| Distribution | Version | Command |\n| :----------- | :------ | :------ |\n| PyPI | x.y.z | `pip install tinyms==x.y.z` |\n|  | latest | `pip install git+https://github.com/tinyms-ai/tinyms.git` |\n| Docker | x.y.z | `docker pull tinyms==x.y.z` |\n|  | latest | - |\n\n> **NOTICE:** The `x.y.z` version shown above should be replaced with the real version number.\n\nPlease checkout the [install document](https://tinyms.readthedocs.io/en/latest/quickstart/install.html) to quickly install or upgrade TinyMS project.\n\n## Quick start\n\nHave no idea what to do with TinyMS\u2753 See the [Quick Start](https://tinyms.readthedocs.io/en/latest/quickstart/quickstart_in_one_minute.html) to implement the image classification application in one minutes\u2757\n\nBesides, here are some use cases listed to demonstrate how TinyMS simplifies the code flow for users.\n\n### Data loading and preprocess\n\n<table>\n<tr>\n<td>\n\n```python\nfrom tinyms.data import MnistDataset, download_dataset\nfrom tinyms.vision import mnist_transform\n\ndata_path = download_dataset('mnist')\nmnist_ds = MnistDataset(data_path, shuffle=True)\nmnist_ds = mnist_transform.apply_ds(mnist_ds)\n```\n\n</td>\n</tr>\n</table>\n\n### Network construction\n\n<table>\n<tr>\n<td>\n\n```python\nfrom tinyms.model import lenet5\n\nnet = lenet5(class_num=10)\n```\n\n</td>\n</tr>\n</table>\n\n### Model train/evaluation\n\n<table>\n<tr>\n<td>\n\n```python\nfrom tinyms.model import Model\n\nmodel = Model(net)\nmodel.compile(loss_fn=net_loss, optimizer=net_opt, metrics=net_metrics)\nmodel.train(epoch_size, train_dataset)\nmodel.save_checkpoint('./checkpoint_lenet.ckpt')\n\u00b7\u00b7\u00b7\nmodel.load_checkpoint('./checkpoint_lenet.ckpt')\nmodel.eval(eval_dataset)\n```\n\n</td>\n</tr>\n</table>\n\n### Model prediction\n\n<table>\n<tr>\n<td>\n\n```python\nfrom PIL import Image\nimport tinyms as ts\nfrom tinyms.model import Model, lenet5\nfrom tinyms.vision import mnist_transform\n\nimg = Image.open(img_path)\nimg = mnist_transform(img)\n\nnet = lenet5(class_num=10)\nmodel = Model(net)\nmodel.load_checkpoint('./checkpoint_lenet.ckpt')\n\ninput = ts.expand_dims(ts.array(img), 0)\nres = model.predict(input).asnumpy()\nprint(\"The label is:\", mnist_transform.postprocess(res))\n```\n\n</td>\n</tr>\n</table>\n\n## API documentation\n\nIf you are interested in learning TinyMS API, please find TinyMS Python API in [API Documentation](https://tinyms.readthedocs.io/en/latest/tinyms/tinyms.html).\n\n## Tutorial\n\nFor a more detailed step-by-step video tutorial, please refer to the following website.\n\n| Episode | Title | Content | Docs | Status | Update Time |\n| ------- | ----- | ------- | ---- | ------ | ----------- |\n| EP01    | [How to learn Deep Learning? The Most Efficient Way For Beginners!](https://www.bilibili.com/video/BV1MB4y1P79S) | Teacher's profile+DeepLearning Course Introduction | - | Published | 2021.3.30 |\n| EP02    | [How we teach computers to understand pictures? Three Ways to Install TinyMS](https://www.bilibili.com/video/BV18v41187fX) | It uncovers the magic of computer vision + three ways to install TinyMS (Ubuntu, Win10, Docker) | [TinyMS Installation For Beginners](https://tinyms.readthedocs.io/zh_CN/latest/quickstart/install.html) | Published | 2020.3.31 |\n| EP03    | [Learn Shell Script in 30 Minutes](https://www.bilibili.com/video/BV1vy4y1b7jh) | It covers the essential concepts such as using variables, basic operators, loops & functions and so on. It also gives you an insight by scaling down some real-time scenarios and demonstrating them using the docker container. | [Learn Shell Script in 30 Minutes (doc)](https://github.com/tinyms-ai/tinyms/blob/main/tutorials/EP03/30min\u901f\u6210Shell\u811a\u672c.md) | Published | 2020.4.1 |\n| EP04    | [Learn Python in 30 Minutes(Part I.)](https://www.bilibili.com/video/BV1Tp4y1b7UG?spm_id_from=333.999.0.0) | Python installation, basic syntax, primitive data types and operators| [Learn Python in 30 Minutes](https://github.com/tinyms-ai/tinyms/blob/main/tutorials/EP04/Quickstart-for-Python-in-30-minutes.md) | Published | 2021.4.23    |\n| EP05    | [Learn Python in 30 Minutes(Part II.)](https://www.bilibili.com/video/BV1XS4y1Z7yp?spm_id_from=333.999.0.0) | Python conditional statements, loop statements, iterators, generators, functions, class, module, advanced usages, and several most commonly used Python libraries in deep learning | [Learn Python in 30 Minutes](https://github.com/tinyms-ai/tinyms/blob/main/tutorials/EP04/Quickstart-for-Python-in-30-minutes.md) | Published | 2022.1.10    |\n\n## Community\n\nFor any developers who are not familiar with how TinyMS community works, please find the [Contributing Guidelines](https://tinyms.readthedocs.io/en/latest/community/contributing.html) to get started.\n\n## Release Notes\n\nThe release notes, see our [RELEASE](https://github.com/tinyms-ai/tinyms/blob/main/RELEASE.md).\n\n## License\n\n[Apache License 2.0](https://github.com/tinyms-ai/tinyms/blob/main/LICENSE)\n\n\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "TinyMS is an Easy-to-Use deep learning development toolkit.",
    "version": "0.3.2",
    "split_keywords": [
        "machine",
        "learning",
        "toolkit"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c80cc2fcdaffadaa2e94f60473401b6a4f43ced24885f5e799bc79832e126bc6",
                "md5": "b3375d09b689efbe283e666fe16ae953",
                "sha256": "981e2a591fa4f10a8effe2763867bccc4ecd6848e46ece3f5ac532e1c307a6c2"
            },
            "downloads": -1,
            "filename": "tinyms-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b3375d09b689efbe283e666fe16ae953",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 150403,
            "upload_time": "2023-02-10T03:27:49",
            "upload_time_iso_8601": "2023-02-10T03:27:49.899499Z",
            "url": "https://files.pythonhosted.org/packages/c8/0c/c2fcdaffadaa2e94f60473401b6a4f43ced24885f5e799bc79832e126bc6/tinyms-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fe4a2127a2c064ca36ed5b8bd46d456c1f69cb9186d555ee4f47b351225ce791",
                "md5": "1d4f4e0c1647a9a12340c04060904aaf",
                "sha256": "22ea61f8e21f8ef79acad5630e2081d36bf77271d1aa56918b420748b7921553"
            },
            "downloads": -1,
            "filename": "tinyms-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "1d4f4e0c1647a9a12340c04060904aaf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 90183,
            "upload_time": "2023-02-10T03:27:52",
            "upload_time_iso_8601": "2023-02-10T03:27:52.505327Z",
            "url": "https://files.pythonhosted.org/packages/fe/4a/2127a2c064ca36ed5b8bd46d456c1f69cb9186d555ee4f47b351225ce791/tinyms-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-10 03:27:52",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "tinyms"
}
        
Elapsed time: 0.04907s