# TiSKitPy
Routines for time series data processing
Uses the [obspy](https://docs.obspy.org) Stream (data) and Inventory (metadata)
classes
[Documentation](https://tiskitpy.readthedocs.io)
## Classes
- `CleanRotator`: rotate data to minimize noise on vertical channel
- `DataCleaner`: Transfer_Function-based data cleaning
- `Decimator`: Decimate time series and update metadata with the decimator's
response
- `SpectralDensity`: Calculate and manipulate spectral density functions.
- `TimeSpans`: Specify time spans to be removed, kept, zeroed, etc.
- `ResponseFunctions`: Frequency response functions for a given input channel.
## Functions
- `FIR_corr`: transform zero-phase data to minimum phase (only works for
LCHEAPO loggers, need to update to calculate/work for any
zero-phase filter)
- `readMSEED`: read in MSEED data, including if the file is too big (> 2 GB)
for obspy's read() function
- `rptransient`: calculate and remove periodic transient (VERY manual!).
Based on Matlab code by E Wielandt, used in Deen et al., 2017
- `PetersonNoiseModel`: return the Peterson High and Low Noise Models
## Installation
First, install `obspy` using the instructions on their webpage.
Then, in the pip/conda environment that contains obspy...
### From this repository
Clone or download this repository, then from within the main repository directory, run:
`pip install .`
You can also install in editable mode (for developers), with:
`pip install -e .`
### Using `pip`
Type `pip install tiskitpy`
Raw data
{
"_id": null,
"home_page": "https://github.com/WayneCrawford/tiskitpy",
"name": "tiskitpy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "oceanography, marine, OBS",
"author": "Wayne Crawford",
"author_email": "crawford@ipgp.fr",
"download_url": "https://files.pythonhosted.org/packages/c3/0d/b7d2ae4c2011343d2e974e338822af70ab95df6d1f95d5a47013f4a345d2/tiskitpy-1.1.0.tar.gz",
"platform": null,
"description": "# TiSKitPy\n\nRoutines for time series data processing\n\nUses the [obspy](https://docs.obspy.org) Stream (data) and Inventory (metadata)\nclasses\n\n\n[Documentation](https://tiskitpy.readthedocs.io)\n\n\n## Classes\n\n- `CleanRotator`: rotate data to minimize noise on vertical channel\n- `DataCleaner`: Transfer_Function-based data cleaning\n- `Decimator`: Decimate time series and update metadata with the decimator's\n response\n- `SpectralDensity`: Calculate and manipulate spectral density functions.\n- `TimeSpans`: Specify time spans to be removed, kept, zeroed, etc.\n- `ResponseFunctions`: Frequency response functions for a given input channel.\n \n \n## Functions\n\n- `FIR_corr`: transform zero-phase data to minimum phase (only works for\n LCHEAPO loggers, need to update to calculate/work for any\n zero-phase filter)\n- `readMSEED`: read in MSEED data, including if the file is too big (> 2 GB)\n for obspy's read() function\n- `rptransient`: calculate and remove periodic transient (VERY manual!). \n \tBased on Matlab code by E Wielandt, used in Deen et al., 2017\n\n- `PetersonNoiseModel`: return the Peterson High and Low Noise Models\n\n\n## Installation\n\nFirst, install `obspy` using the instructions on their webpage.\nThen, in the pip/conda environment that contains obspy...\n\n### From this repository\n\nClone or download this repository, then from within the main repository directory, run:\n\n`pip install .`\n\nYou can also install in editable mode (for developers), with:\n\n`pip install -e .`\n\n### Using `pip`\n\nType `pip install tiskitpy`\n",
"bugtrack_url": null,
"license": null,
"summary": "TIme Series toolKIT",
"version": "1.1.0",
"project_urls": {
"Homepage": "https://github.com/WayneCrawford/tiskitpy"
},
"split_keywords": [
"oceanography",
" marine",
" obs"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "ab173e18db5f456fac22a45c6af4e4c11becef6b36726984ca1fde8870a47ce2",
"md5": "1c05527abf63d14e04ce428d8bbf35df",
"sha256": "5ea2edf0fbc334c362c2682883927903b7432288f6b87fdefd31346c2947388a"
},
"downloads": -1,
"filename": "tiskitpy-1.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1c05527abf63d14e04ce428d8bbf35df",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 189913,
"upload_time": "2025-07-24T09:24:46",
"upload_time_iso_8601": "2025-07-24T09:24:46.372578Z",
"url": "https://files.pythonhosted.org/packages/ab/17/3e18db5f456fac22a45c6af4e4c11becef6b36726984ca1fde8870a47ce2/tiskitpy-1.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c30db7d2ae4c2011343d2e974e338822af70ab95df6d1f95d5a47013f4a345d2",
"md5": "88128f186874fe30e01e871f840fdb5a",
"sha256": "b33914d2ef51f6419028d93949cfdc56fbc4be6b3d267933465f1e81fb9562c0"
},
"downloads": -1,
"filename": "tiskitpy-1.1.0.tar.gz",
"has_sig": false,
"md5_digest": "88128f186874fe30e01e871f840fdb5a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 168975,
"upload_time": "2025-07-24T09:24:47",
"upload_time_iso_8601": "2025-07-24T09:24:47.641015Z",
"url": "https://files.pythonhosted.org/packages/c3/0d/b7d2ae4c2011343d2e974e338822af70ab95df6d1f95d5a47013f4a345d2/tiskitpy-1.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-24 09:24:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "WayneCrawford",
"github_project": "tiskitpy",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "tiskitpy"
}