# TiSKitPy
Routines for time series data processing
Uses the [obspy](https://docs.obspy.org) Stream (data) and Inventory (metadata)
classes
[Documentation](https://tiskitpy.readthedocs.io)
## Primary Classes
- `SpectralDensity`: Calculate and manipulate spectral density functions.
- `Decimator`: Decimate time series and update metadata with the decimator's
response
- `CleanRotator`: rotate data to minimize noise on vertical channel
- `DataCleaner`: Transfer_Function-based data cleaning
- `ResponseFunctions`: Frequency response functions for a given input channel.
- `Compliance`: Seafloor Compliance
- `SeafloorSynthetic`: Generate synthetic seafloor data, including compliance signal
## Functions
- `FIR_corr`: transform zero-phase data to minimum phase (only works for
LCHEAPO loggers, need to update to calculate/work for any
zero-phase filter)
- `readMSEED`: read in MSEED data, including if the file is too big (> 2 GB)
for obspy's read() function
- `rptransient`: calculate and remove periodic transient (VERY manual!).
Based on Matlab code by E Wielandt, used in Deen et al., 2017
- `PetersonNoiseModel`: return the Peterson High and Low Noise Models
## Installation
First, install `obspy` using the instructions on their webpage.
Then, in the pip/conda environment that contains obspy...
### From this repository
Clone or download this repository, then from within the main repository directory, run:
`pip install .`
You can also install in editable mode (for developers), with:
`pip install -e .`
### Using `pip`
Type `pip install tiskitpy`
Raw data
{
"_id": null,
"home_page": "https://github.com/WayneCrawford/tiskitpy",
"name": "tiskitpy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "oceanography, marine, OBS",
"author": "Wayne Crawford",
"author_email": "crawford@ipgp.fr",
"download_url": "https://files.pythonhosted.org/packages/b2/b2/c93b2a76f768269e2a0310c5669147561b784c1d0b8e91bb87ab22da8219/tiskitpy-2.1.0.tar.gz",
"platform": null,
"description": "# TiSKitPy\n\nRoutines for time series data processing\n\nUses the [obspy](https://docs.obspy.org) Stream (data) and Inventory (metadata)\nclasses\n\n\n[Documentation](https://tiskitpy.readthedocs.io)\n\n\n## Primary Classes\n\n- `SpectralDensity`: Calculate and manipulate spectral density functions.\n- `Decimator`: Decimate time series and update metadata with the decimator's\n response\n- `CleanRotator`: rotate data to minimize noise on vertical channel\n- `DataCleaner`: Transfer_Function-based data cleaning\n- `ResponseFunctions`: Frequency response functions for a given input channel.\n- `Compliance`: Seafloor Compliance\n- `SeafloorSynthetic`: Generate synthetic seafloor data, including compliance signal\n \n \n## Functions\n\n- `FIR_corr`: transform zero-phase data to minimum phase (only works for\n LCHEAPO loggers, need to update to calculate/work for any\n zero-phase filter)\n- `readMSEED`: read in MSEED data, including if the file is too big (> 2 GB)\n for obspy's read() function\n- `rptransient`: calculate and remove periodic transient (VERY manual!). \n \tBased on Matlab code by E Wielandt, used in Deen et al., 2017\n\n- `PetersonNoiseModel`: return the Peterson High and Low Noise Models\n\n\n## Installation\n\nFirst, install `obspy` using the instructions on their webpage.\nThen, in the pip/conda environment that contains obspy...\n\n### From this repository\n\nClone or download this repository, then from within the main repository directory, run:\n\n`pip install .`\n\nYou can also install in editable mode (for developers), with:\n\n`pip install -e .`\n\n### Using `pip`\n\nType `pip install tiskitpy`\n",
"bugtrack_url": null,
"license": null,
"summary": "TIme Series toolKIT",
"version": "2.1.0",
"project_urls": {
"Homepage": "https://github.com/WayneCrawford/tiskitpy"
},
"split_keywords": [
"oceanography",
" marine",
" obs"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "fc5cd6216546070381615f420602f42a9676441cb132d7fba00ad2747768b67f",
"md5": "5635c7120a655125bda0942f665457a1",
"sha256": "79c8f90772bc299650e44812ace878536c0b637f9c281f5fce794cda6dc18999"
},
"downloads": -1,
"filename": "tiskitpy-2.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5635c7120a655125bda0942f665457a1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 193659,
"upload_time": "2025-07-30T10:30:11",
"upload_time_iso_8601": "2025-07-30T10:30:11.506409Z",
"url": "https://files.pythonhosted.org/packages/fc/5c/d6216546070381615f420602f42a9676441cb132d7fba00ad2747768b67f/tiskitpy-2.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b2b2c93b2a76f768269e2a0310c5669147561b784c1d0b8e91bb87ab22da8219",
"md5": "7b376a8f2a3bcbbe62abe05c622fcb4b",
"sha256": "29dadcb88651d41ee8624a485ca7090ef7d7e69a2768f14ad3e95f1d4cb09b4a"
},
"downloads": -1,
"filename": "tiskitpy-2.1.0.tar.gz",
"has_sig": false,
"md5_digest": "7b376a8f2a3bcbbe62abe05c622fcb4b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 171180,
"upload_time": "2025-07-30T10:30:13",
"upload_time_iso_8601": "2025-07-30T10:30:13.070528Z",
"url": "https://files.pythonhosted.org/packages/b2/b2/c93b2a76f768269e2a0310c5669147561b784c1d0b8e91bb87ab22da8219/tiskitpy-2.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-30 10:30:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "WayneCrawford",
"github_project": "tiskitpy",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "tiskitpy"
}