# TIVar
Translation Initiation Variation
Predict translation initiation (TI) efficiency for potential start codons, based on the context sequence near the start codon. Given SNP/Indel variation, this tools can predict changes of TI efficiencies between ref and alt alleles.
# INSTALL
Python version >= 3.4.
**Requirements**
[NumPy](https://numpy.org/)
[PyTorch](https://pytorch.org/)
**Install from source**
`git clone https://github.com/zhpn1024/TIVar`
`python setup.py install`
or
`python setup.py install --user`
**Install from PyPI**
`pip install tivar`
# Usage
**predict**
This module can calculate TI efficiency scores from given sequences.
Fasta sequence file as input:
`tivar predict -S test1.fa -o out1.txt`
Provide sequence in the parameter:
`tivar predict -s aaaaaacaaaaaaaTGTACAATGGATGCATTGAAATTATATGTAATTGTATAAATGGTGCAACA -o out1.txt`
Provide transcript annotation and genome sequence:
`tivar predict -g hg38_gc31.gtf.gz -f hg38.fa -o out1.txt`
The output is like:
|SeqID|Pos|StartSeq|EffScore|
|-----|-----|-----|-----|
|Seq|13|aacaaaaaa-aTG-TACA|0.30354|
|Seq|20|aaaTGTACA-ATG-GATG|0.37131|
**diff**
This module predict TI changes caused by sequence variation.
`tivar diff -i test.vcf -g hg38_gc31.gtf.gz -f hg38.fa -o out2.txt`
The output is like:
|Gid|Tid|Var|GenoPos|Strand|Pos|RefSeq|AltSeq|EffeRef|EffeAlt|Diff|FC|Type|
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|ENSG00000134262.13|ENST00000369569.6|chr1:113895309:A>AC|113895310|-|2056|ACCCTCCAG-ATG-GCTC|ACCCTCCAG-AGT-GGCT|0.32097|0.0|-0.321|0.0|TI_decreased|
|ENSG00000134262.13|ENST00000369569.6|chr1:113895309:A>AC|113895310|-|2056|ACCCTCCAG-ATG-GCTC|CCCTCCAGA-GTG-GCTC|0.32097|0.04335|-0.2776|0.1351|TI_decreased|
Raw data
{
"_id": null,
"home_page": "https://github.com/zhpn1024/TIVar",
"name": "tivar",
"maintainer": null,
"docs_url": null,
"requires_python": "<4,>=3.4",
"maintainer_email": null,
"keywords": "translation, initiation, RNA, variation",
"author": "Peng Zhang",
"author_email": "zhpn1024@163.com",
"download_url": null,
"platform": null,
"description": "# TIVar\nTranslation Initiation Variation\n\nPredict translation initiation (TI) efficiency for potential start codons, based on the context sequence near the start codon. Given SNP/Indel variation, this tools can predict changes of TI efficiencies between ref and alt alleles.\n\n# INSTALL\n\nPython version >= 3.4.\n\n**Requirements**\n\n[NumPy](https://numpy.org/)\n\n[PyTorch](https://pytorch.org/)\n\n**Install from source**\n\n`git clone https://github.com/zhpn1024/TIVar`\n\n`python setup.py install`\n\nor\n\n`python setup.py install --user`\n\n\n**Install from PyPI**\n\n`pip install tivar`\n\n\n# Usage\n\n**predict**\n\nThis module can calculate TI efficiency scores from given sequences.\n\nFasta sequence file as input:\n\n`tivar predict -S test1.fa -o out1.txt`\n\nProvide sequence in the parameter:\n\n`tivar predict -s aaaaaacaaaaaaaTGTACAATGGATGCATTGAAATTATATGTAATTGTATAAATGGTGCAACA -o out1.txt`\n\nProvide transcript annotation and genome sequence:\n\n`tivar predict -g hg38_gc31.gtf.gz -f hg38.fa -o out1.txt`\n\nThe output is like:\n\n|SeqID|Pos|StartSeq|EffScore|\n|-----|-----|-----|-----|\n|Seq|13|aacaaaaaa-aTG-TACA|0.30354|\n|Seq|20|aaaTGTACA-ATG-GATG|0.37131|\n\n\n\n**diff**\n\nThis module predict TI changes caused by sequence variation.\n\n`tivar diff -i test.vcf -g hg38_gc31.gtf.gz -f hg38.fa -o out2.txt`\n\nThe output is like:\n\n|Gid|Tid|Var|GenoPos|Strand|Pos|RefSeq|AltSeq|EffeRef|EffeAlt|Diff|FC|Type|\n|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|\n|ENSG00000134262.13|ENST00000369569.6|chr1:113895309:A>AC|113895310|-|2056|ACCCTCCAG-ATG-GCTC|ACCCTCCAG-AGT-GGCT|0.32097|0.0|-0.321|0.0|TI_decreased|\n|ENSG00000134262.13|ENST00000369569.6|chr1:113895309:A>AC|113895310|-|2056|ACCCTCCAG-ATG-GCTC|CCCTCCAGA-GTG-GCTC|0.32097|0.04335|-0.2776|0.1351|TI_decreased|\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Translation Initiation Variation",
"version": "0.1.1",
"project_urls": {
"Bug Reports": "https://github.com/zhpn1024/TIVar/issues",
"Homepage": "https://github.com/zhpn1024/TIVar",
"Source": "https://github.com/zhpn1024/TIVar"
},
"split_keywords": [
"translation",
" initiation",
" rna",
" variation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e0fdf548f7009da575e54539709f57b41fb3d15dc7df215dd26a6f3044da5919",
"md5": "58dccdb5bf2adebfe05daca662f6d9f2",
"sha256": "fa03585b99d20af5b1822bd83db1ad3c0c7da7442c2b9e2cb3326e02b3f02bcc"
},
"downloads": -1,
"filename": "tivar-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "58dccdb5bf2adebfe05daca662f6d9f2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4,>=3.4",
"size": 105728,
"upload_time": "2024-10-23T08:54:46",
"upload_time_iso_8601": "2024-10-23T08:54:46.852649Z",
"url": "https://files.pythonhosted.org/packages/e0/fd/f548f7009da575e54539709f57b41fb3d15dc7df215dd26a6f3044da5919/tivar-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-23 08:54:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "zhpn1024",
"github_project": "TIVar",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "tivar"
}