# TNO Quantum: Datasets
TNO Quantum provides generic software components aimed at facilitating the development of quantum applications.
The ``tno.quantum.ml.datasets`` package wraps some of the functionality of the [sklearn.datasets](https://scikit-learn.org/stable/datasets.html).
This package is used for testing the ``tno.quantum.ml`` classifiers and clustering algorithms in an easy, reproducible and consistent way.
*Limitations in (end-)use: the content of this software package may solely be used for applications that comply with international export control laws.*
## Documentation
Documentation of the `tno.quantum.ml.datasets` package can be found [here](https://tno-quantum.github.io/documentation/).
## Install
Easily install the `tno.quantum.ml.datasets` package using pip:
```console
$ python -m pip install tno.quantum.ml.datasets
```
If you wish to run the tests you can use:
```console
$ python -m pip install 'tno.quantum.ml.datasets[tests]'
```
## Usage
Here's an example of how the ``datasets`` package can be used to load an iris dataset.
```python
from tno.quantum.ml.datasets import get_iris_dataset
X_train, y_train, X_val, y_val = get_iris_dataset()
```
            
         
        Raw data
        
            {
    "_id": null,
    "home_page": null,
    "name": "tno.quantum.ml.datasets",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "TNO Quantum Code Lab <tnoquantum@tno.nl>",
    "keywords": "TNO, Quantum, Datasets, Machine Learning",
    "author": null,
    "author_email": "TNO Quantum Code Lab <tnoquantum@tno.nl>",
    "download_url": "https://files.pythonhosted.org/packages/06/17/5e434fe4ec26e31e1b51979c05dd0828e056f006e5d4dd8d67deb5a5ac33/tno_quantum_ml_datasets-2.1.1.tar.gz",
    "platform": "any",
    "description": "# TNO Quantum: Datasets\r\n\r\nTNO Quantum provides generic software components aimed at facilitating the development of quantum applications.\r\n\r\nThe ``tno.quantum.ml.datasets`` package wraps some of the functionality of the [sklearn.datasets](https://scikit-learn.org/stable/datasets.html).\r\nThis package is used for testing the ``tno.quantum.ml`` classifiers and clustering algorithms in an easy, reproducible and consistent way.\r\n\r\n*Limitations in (end-)use: the content of this software package may solely be used for applications that comply with international export control laws.*\r\n\r\n## Documentation\r\n\r\nDocumentation of the `tno.quantum.ml.datasets` package can be found [here](https://tno-quantum.github.io/documentation/).\r\n\r\n\r\n## Install\r\n\r\nEasily install the `tno.quantum.ml.datasets` package using pip:\r\n\r\n```console\r\n$ python -m pip install tno.quantum.ml.datasets\r\n```\r\n\r\nIf you wish to run the tests you can use:\r\n```console\r\n$ python -m pip install 'tno.quantum.ml.datasets[tests]'\r\n```\r\n\r\n## Usage\r\n\r\nHere's an example of how the ``datasets`` package can be used to load an iris dataset.\r\n\r\n```python\r\nfrom tno.quantum.ml.datasets import get_iris_dataset\r\nX_train, y_train, X_val, y_val = get_iris_dataset()\r\n```\r\n",
    "bugtrack_url": null,
    "license": "Apache License, Version 2.0",
    "summary": "Machine learning datasets package",
    "version": "2.1.1",
    "project_urls": {
        "Documentation": "https://tno-quantum.github.io/documentation/",
        "Homepage": "https://github.com/TNO-Quantum/",
        "Source": "https://github.com/TNO-Quantum/ml.datasets"
    },
    "split_keywords": [
        "tno",
        " quantum",
        " datasets",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "39f0a70f7e50317ce7bc01148f3791aa8123cb8dc20ad4d68918b840d311754e",
                "md5": "5f5f06aabf17a7ea0c11681ee3d24019",
                "sha256": "32a596cc5019e91326de880462942feaf390d87e20a22e22862a4b90bbabec38"
            },
            "downloads": -1,
            "filename": "tno_quantum_ml_datasets-2.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5f5f06aabf17a7ea0c11681ee3d24019",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 21531,
            "upload_time": "2025-10-19T19:22:36",
            "upload_time_iso_8601": "2025-10-19T19:22:36.862899Z",
            "url": "https://files.pythonhosted.org/packages/39/f0/a70f7e50317ce7bc01148f3791aa8123cb8dc20ad4d68918b840d311754e/tno_quantum_ml_datasets-2.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "06175e434fe4ec26e31e1b51979c05dd0828e056f006e5d4dd8d67deb5a5ac33",
                "md5": "6ac11fa09f56f3140a6bd59db6e1f589",
                "sha256": "2ba280fc718f95f0320216add433afa189ba0ce1aded5efb39b3356febf157ec"
            },
            "downloads": -1,
            "filename": "tno_quantum_ml_datasets-2.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "6ac11fa09f56f3140a6bd59db6e1f589",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 15824,
            "upload_time": "2025-10-19T19:22:38",
            "upload_time_iso_8601": "2025-10-19T19:22:38.078089Z",
            "url": "https://files.pythonhosted.org/packages/06/17/5e434fe4ec26e31e1b51979c05dd0828e056f006e5d4dd8d67deb5a5ac33/tno_quantum_ml_datasets-2.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-19 19:22:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "TNO-Quantum",
    "github_project": "ml.datasets",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "tno.quantum.ml.datasets"
}