tno.quantum.optimization.qubo.solvers


Nametno.quantum.optimization.qubo.solvers JSON
Version 1.5.0 PyPI version JSON
download
home_pageNone
SummaryQUBO solvers
upload_time2025-10-19 19:25:30
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseApache License, Version 2.0
keywords tno quantum optimization qubo solvers
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TNO Quantum: Optimization - QUBO - Solvers

TNO Quantum provides generic software components aimed at facilitating the development
of quantum applications.

This package contains implementations of QUBO solvers.

## Documentation

Documentation of the `tno.quantum.optimization.qubo.solvers` package can be found [here](https://tno-quantum.github.io/documentation/).


## Install

Easily install the `tno.quantum.optimization.qubo.solvers` package using pip:

```console
$ python -m pip install tno.quantum.optimization.qubo.solvers
```

By default, the package is installed without external solver dependencies. You can
specify which QUBO solvers you would like to install. Available options are
``[dwave, qubovert, dqo]``. Alternatively, you can install all solvers
simultaneously using the ``[all]`` option

```console
$ python -m pip install tno.quantum.optimization.qubo.solvers[all]
```

## Usage

The following example shows how to list the available solvers and how to instantiate them.

```python
from tno.quantum.optimization.qubo.components import SolverConfig

supported_solvers = list(SolverConfig.supported_items())
solver = SolverConfig(name='bf_solver').get_instance()
```

Once a solver is instantiated, it can be used to solve a `QUBO` as follows.

```python
from tno.quantum.optimization.qubo.components import QUBO

# Construct QUBO
qubo = QUBO([
     [1,   2, 3],
     [4, -50, 6],
     [7,   8, 9]
 ])

# Solve QUBO
result = solver.solve(qubo)
result.best_bitvector # BitVector(010)
result.best_value # -50.0
```

## (End)use limitations
The content of this software may solely be used for applications that comply with international export control laws.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "tno.quantum.optimization.qubo.solvers",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "TNO Quantum Code Lab <tnoquantum@tno.nl>",
    "keywords": "TNO, Quantum, Optimization, QUBO, Solvers",
    "author": null,
    "author_email": "TNO Quantum Code Lab <tnoquantum@tno.nl>",
    "download_url": "https://files.pythonhosted.org/packages/bd/41/929831df036381d04f6b191e0f40ae269bb8bf1184b7c29ee5dfeeb84c91/tno_quantum_optimization_qubo_solvers-1.5.0.tar.gz",
    "platform": "any",
    "description": "# TNO Quantum: Optimization - QUBO - Solvers\r\n\r\nTNO Quantum provides generic software components aimed at facilitating the development\r\nof quantum applications.\r\n\r\nThis package contains implementations of QUBO solvers.\r\n\r\n## Documentation\r\n\r\nDocumentation of the `tno.quantum.optimization.qubo.solvers` package can be found [here](https://tno-quantum.github.io/documentation/).\r\n\r\n\r\n## Install\r\n\r\nEasily install the `tno.quantum.optimization.qubo.solvers` package using pip:\r\n\r\n```console\r\n$ python -m pip install tno.quantum.optimization.qubo.solvers\r\n```\r\n\r\nBy default, the package is installed without external solver dependencies. You can\r\nspecify which QUBO solvers you would like to install. Available options are\r\n``[dwave, qubovert, dqo]``. Alternatively, you can install all solvers\r\nsimultaneously using the ``[all]`` option\r\n\r\n```console\r\n$ python -m pip install tno.quantum.optimization.qubo.solvers[all]\r\n```\r\n\r\n## Usage\r\n\r\nThe following example shows how to list the available solvers and how to instantiate them.\r\n\r\n```python\r\nfrom tno.quantum.optimization.qubo.components import SolverConfig\r\n\r\nsupported_solvers = list(SolverConfig.supported_items())\r\nsolver = SolverConfig(name='bf_solver').get_instance()\r\n```\r\n\r\nOnce a solver is instantiated, it can be used to solve a `QUBO` as follows.\r\n\r\n```python\r\nfrom tno.quantum.optimization.qubo.components import QUBO\r\n\r\n# Construct QUBO\r\nqubo = QUBO([\r\n     [1,   2, 3],\r\n     [4, -50, 6],\r\n     [7,   8, 9]\r\n ])\r\n\r\n# Solve QUBO\r\nresult = solver.solve(qubo)\r\nresult.best_bitvector # BitVector(010)\r\nresult.best_value # -50.0\r\n```\r\n\r\n## (End)use limitations\r\nThe content of this software may solely be used for applications that comply with international export control laws.\r\n",
    "bugtrack_url": null,
    "license": "Apache License, Version 2.0",
    "summary": "QUBO solvers",
    "version": "1.5.0",
    "project_urls": {
        "Documentation": "https://github.com/TNO-Quantum/",
        "Homepage": "https://github.com/TNO-Quantum/",
        "Source": "https://github.com/TNO-Quantum/optimization.qubo.solvers"
    },
    "split_keywords": [
        "tno",
        " quantum",
        " optimization",
        " qubo",
        " solvers"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4a82c1f2727ee8fccf91b9a446edbff36cccde23104e923259883f1eeea1a451",
                "md5": "7d907c0379fe2ca1c7d3c7ac151a3587",
                "sha256": "8aa2de615db0ba17051ed292af17ac9b7ea64475d1bc5da0b6132508ca8609e7"
            },
            "downloads": -1,
            "filename": "tno_quantum_optimization_qubo_solvers-1.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7d907c0379fe2ca1c7d3c7ac151a3587",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 81744,
            "upload_time": "2025-10-19T19:25:29",
            "upload_time_iso_8601": "2025-10-19T19:25:29.480224Z",
            "url": "https://files.pythonhosted.org/packages/4a/82/c1f2727ee8fccf91b9a446edbff36cccde23104e923259883f1eeea1a451/tno_quantum_optimization_qubo_solvers-1.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "bd41929831df036381d04f6b191e0f40ae269bb8bf1184b7c29ee5dfeeb84c91",
                "md5": "0762886486d1d359e84f030fc53b4014",
                "sha256": "aca4ef6c6df128a4b35a1460bf93d707058506b7c1fb155e9e8f4a2e961382a8"
            },
            "downloads": -1,
            "filename": "tno_quantum_optimization_qubo_solvers-1.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "0762886486d1d359e84f030fc53b4014",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 46992,
            "upload_time": "2025-10-19T19:25:30",
            "upload_time_iso_8601": "2025-10-19T19:25:30.910311Z",
            "url": "https://files.pythonhosted.org/packages/bd/41/929831df036381d04f6b191e0f40ae269bb8bf1184b7c29ee5dfeeb84c91/tno_quantum_optimization_qubo_solvers-1.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-19 19:25:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "TNO-Quantum",
    "github_project": "optimization.qubo.solvers",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "tno.quantum.optimization.qubo.solvers"
}
        
Elapsed time: 2.34176s