topopyscale


Nametopopyscale JSON
Version 0.2.5 PyPI version JSON
download
home_pagehttps://github.com/ArcticSnow/TopoPyScale
SummaryTopoPyScale: A Python Package for Hillslope Climate Downscaling
upload_time2024-02-26 13:36:31
maintainer
docs_urlNone
author['Simon Filhol', 'Joel Fiddes', 'Kristoffer Aalstad']
requires_python>=3.8
licenseMIT
keywords climate downscaling meteorology xarray
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <a style="border-width:0" href="https://doi.org/10.21105/joss.05059">
  <img src="https://joss.theoj.org/papers/10.21105/joss.05059/status.svg" alt="DOI badge" ></a>
  
[![DOI](https://zenodo.org/badge/411249045.svg)](https://zenodo.org/badge/latestdoi/411249045)
[![GitHub license](https://img.shields.io/github/license/ArcticSnow/TopoPyScale)](https://github.com/ArcticSnow/TopoPyScale/blob/main/LICENSE)
![GitHub release (latest by date)](https://img.shields.io/github/v/release/ArcticSnow/TopoPyScale)
[![][docs-dev-img]][docs-dev-url]
![Test](https://github.com/ArcticSnow/TopoPyScale/actions/workflows/test_topopyscale.yml/badge.svg)

Binder Notebooks Examples: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/ArcticSnow/TopoPyScale_examples/HEAD)

[docs-dev-img]: https://img.shields.io/badge/docs-latest-blue.svg
[docs-dev-url]: https://topopyscale.readthedocs.io

# TopoPyScale
Python version of Toposcale packaged as a Pypi library. Toposcale is an original idea of Joel Fiddes to perform topography-based downscaling of climate data to the hillslope scale.

Documentation avalaible: https://topopyscale.readthedocs.io

![](https://github.com/ArcticSnow/TopoPyScale/blob/main/JOSS/temperature_comparison_crop_scaled.jpg)

**References:**

- Filhol et al., (2023). TopoPyScale: A Python Package for Hillslope Climate Downscaling. Journal of Open Source Software, 8(86), 5059, https://doi.org/10.21105/joss.05059

And the original method it relies on:
- Fiddes, J. and Gruber, S.: TopoSCALE v.1.0: downscaling gridded climate data in complex terrain, Geosci. Model Dev., 7, 387–405, https://doi.org/10.5194/gmd-7-387-2014, 2014.
- Fiddes, J. and Gruber, S.: TopoSUB: a tool for efficient large area numerical modelling in complex topography at sub-grid scales, Geosci. Model Dev., 5, 1245–1257, https://doi.org/10.5194/gmd-5-1245-2012, 2012. 

Kristoffer Aalstad has a Matlab implementation: https://github.com/krisaalstad/TopoLAB

## Contribution Workflow
**Please follow these simple rules:**
1. a bug -> fix it! 
2. an idea or a bug you cannot fix? -> create a new [issue](https://github.com/ArcticSnow/TopoPyScale/issues) if none doesn't already exist. If one exist, then add material to it.
3. wanna develop a new feature/idea? -> create a new branch. Go wild. Merge with main branch when accomplished.
4. Create release version when significant improvements and bug fixes have been done. Coordinate with others on [Discussions](https://github.com/ArcticSnow/TopoPyScale/discussions)

**Create a new release:**
Follow procedure and conventions described in: https://www.youtube.com/watch?v=Ob9llA_QhQY

Our forum is now on [Github Discussions](https://github.com/ArcticSnow/TopoPyScale/discussions). Come visit!


## Design

1. Inputs
    - Climate data from reanalysis (ERA5, etc)
    - Climate data from future projections (CORDEX) (TBD)
    - DEM from local source, or fetch from public repository: SRTM, ArcticDEM, ASTER
2. Run TopoScale
    - compute derived values (from DEM)
    - toposcale (k-mean clustering)
    - interpolation (bilinear, inverse square dist.)
3. Output
    - Cryogrid format
    - FSM format
    - CROCUS format
    - Snowmodel format
    - basic netcfd
    - For each method, have the choice to output either the abstract cluster points, or the gridded product after interpolation
4. Validation toolset
    - validation to local observation timeseries
    - plotting
5. Gap filling algorithm
    - random forest temporal gap filling (TBD)

Validation (4) and Gap filling (4) are future implementation.

## Installation

We have now added an environments.yml file to handle versions of depencencies that are tested with the current codebase, to use this run:

`conda env create -f environment.yml`

Alternatively you can follow this method for dependencies (to be deprecated):

```bash
conda create -n downscaling python=3.9 ipython
conda activate downscaling

# Recomended way to install dependencies:
conda install -c conda-forge xarray matplotlib scikit-learn pandas numpy netcdf4 h5netcdf rasterio pyproj dask rioxarray
```

Then install the code:

```
# OPTION 1 (Pypi release):
pip install TopoPyScale

# OPTION 2 (development):
cd github  # navigate to where you want to clone TopoPyScale
git clone git@github.com:ArcticSnow/TopoPyScale.git
pip install -e TopoPyScale    #install a development version

#----------------------------------------------------------
#            OPTIONAL: if using jupyter lab
# add this new Python kernel to your jupyter lab PATH
python -m ipykernel install --user --name downscaling

# Tool for generating documentation from code docstring
pip install lazydocs
```

Then you need to setup your `cdsapi` with the Copernicus API key system. Follow [this tutorial](https://cds.climate.copernicus.eu/api-how-to#install-the-cds-api-key) after creating an account with [Copernicus](https://cds.climate.copernicus.eu/). On Linux, create a file `nano ~/.cdsapirc` with inside:

```
url: https://cds.climate.copernicus.eu/api/v2
key: {uid}:{api-key}
```

## Basic usage

1. Setup your Python environment
2. Create your project directory
3. Configure the file `config.ini` to fit your problem (see [`config.yml`](https://github.com/ArcticSnow/TopoPyScale_examples/blob/main/ex1_norway_finse/config_spatial.yml) for an example)
4. Run TopoPyScale

```python
import pandas as pd
from TopoPyScale import topoclass as tc
from matplotlib import pyplot as plt

# ========= STEP 1 ==========
# Load Configuration
config_file = './config.yml'
mp = tc.Topoclass(config_file)
# Compute parameters of the DEM (slope, aspect, sky view factor)
mp.compute_dem_param()

# ========== STEP 2 ===========
# Extract DEM parameters for points of interest (centroids or physical points)

mp.extract_topo_param()

# ----- Option 1:
# Compute clustering of the input DEM and extract cluster centroids
#mp.extract_dem_cluster_param()
# plot clusters
#mp.toposub.plot_clusters_map()
# plot sky view factor
#mp.toposub.plot_clusters_map(var='svf', cmap=plt.cm.viridis)

# ------ Option 2:
# inidicate in the config file the .csv file containing a list of point coordinates (!!! must same coordinate system as DEM !!!)
#mp.extract_pts_param(method='linear',index_col=0)

# ========= STEP 3 ==========
# compute solar geometry and horizon angles
mp.compute_solar_geometry()
mp.compute_horizon()

# ========= STEP 4 ==========
# Perform the downscaling
mp.downscale_climate()

# ========= STEP 5 ==========
# explore the downscaled dataset. For instance the temperature difference between each point and the first one
(mp.downscaled_pts.t-mp.downscaled_pts.t.isel(point_id=0)).plot()
plt.show()

# ========= STEP 6 ==========
# Export output to desired format
mp.to_netcdf()
```

TopoClass will create a file structure in the project folder (see below). TopoPyScale assumes you have a DEM in GeoTiFF, and a set of climate data in netcdf (following ERA5 variable conventions). 
TopoPyScale can easier segment the DEM using clustering (e.g. K-mean), or a list of predefined point coordinates in `pts_list.csv` can be provided. Make sure all parameters in `config.ini` are correct.
```
my_project/
    ├── inputs/
        ├── dem/ 
            ├── my_dem.tif
            └── pts_list.csv  (optional)
        └── climate/
            ├── PLEV*.nc
            └── SURF*.nc
    ├── outputs/
    └── config.ini
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ArcticSnow/TopoPyScale",
    "name": "topopyscale",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "climate,downscaling,meteorology,xarray",
    "author": "['Simon Filhol', 'Joel Fiddes', 'Kristoffer Aalstad']",
    "author_email": "simon.filhol@geo.uio.no",
    "download_url": "https://files.pythonhosted.org/packages/23/d7/9a83104874c07f5f329253f6fe55eceb78fa23578bd36601afc4f0483438/topopyscale-0.2.5.tar.gz",
    "platform": null,
    "description": "<a style=\"border-width:0\" href=\"https://doi.org/10.21105/joss.05059\">\n  <img src=\"https://joss.theoj.org/papers/10.21105/joss.05059/status.svg\" alt=\"DOI badge\" ></a>\n  \n[![DOI](https://zenodo.org/badge/411249045.svg)](https://zenodo.org/badge/latestdoi/411249045)\n[![GitHub license](https://img.shields.io/github/license/ArcticSnow/TopoPyScale)](https://github.com/ArcticSnow/TopoPyScale/blob/main/LICENSE)\n![GitHub release (latest by date)](https://img.shields.io/github/v/release/ArcticSnow/TopoPyScale)\n[![][docs-dev-img]][docs-dev-url]\n![Test](https://github.com/ArcticSnow/TopoPyScale/actions/workflows/test_topopyscale.yml/badge.svg)\n\nBinder Notebooks Examples: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/ArcticSnow/TopoPyScale_examples/HEAD)\n\n[docs-dev-img]: https://img.shields.io/badge/docs-latest-blue.svg\n[docs-dev-url]: https://topopyscale.readthedocs.io\n\n# TopoPyScale\nPython version of Toposcale packaged as a Pypi library. Toposcale is an original idea of Joel Fiddes to perform topography-based downscaling of climate data to the hillslope scale.\n\nDocumentation avalaible: https://topopyscale.readthedocs.io\n\n![](https://github.com/ArcticSnow/TopoPyScale/blob/main/JOSS/temperature_comparison_crop_scaled.jpg)\n\n**References:**\n\n- Filhol et al., (2023). TopoPyScale: A Python Package for Hillslope Climate Downscaling. Journal of Open Source Software, 8(86), 5059, https://doi.org/10.21105/joss.05059\n\nAnd the original method it relies on:\n- Fiddes, J. and Gruber, S.: TopoSCALE v.1.0: downscaling gridded climate data in complex terrain, Geosci. Model Dev., 7, 387\u2013405, https://doi.org/10.5194/gmd-7-387-2014, 2014.\n- Fiddes, J. and Gruber, S.: TopoSUB: a tool for efficient large area numerical modelling in complex topography at sub-grid scales, Geosci. Model Dev., 5, 1245\u20131257, https://doi.org/10.5194/gmd-5-1245-2012, 2012. \n\nKristoffer Aalstad has a Matlab implementation: https://github.com/krisaalstad/TopoLAB\n\n## Contribution Workflow\n**Please follow these simple rules:**\n1. a bug -> fix it! \n2. an idea or a bug you cannot fix? -> create a new [issue](https://github.com/ArcticSnow/TopoPyScale/issues) if none doesn't already exist. If one exist, then add material to it.\n3. wanna develop a new feature/idea? -> create a new branch. Go wild. Merge with main branch when accomplished.\n4. Create release version when significant improvements and bug fixes have been done. Coordinate with others on [Discussions](https://github.com/ArcticSnow/TopoPyScale/discussions)\n\n**Create a new release:**\nFollow procedure and conventions described in: https://www.youtube.com/watch?v=Ob9llA_QhQY\n\nOur forum is now on [Github Discussions](https://github.com/ArcticSnow/TopoPyScale/discussions). Come visit!\n\n\n## Design\n\n1. Inputs\n    - Climate data from reanalysis (ERA5, etc)\n    - Climate data from future projections (CORDEX) (TBD)\n    - DEM from local source, or fetch from public repository: SRTM, ArcticDEM, ASTER\n2. Run TopoScale\n    - compute derived values (from DEM)\n    - toposcale (k-mean clustering)\n    - interpolation (bilinear, inverse square dist.)\n3. Output\n    - Cryogrid format\n    - FSM format\n    - CROCUS format\n    - Snowmodel format\n    - basic netcfd\n    - For each method, have the choice to output either the abstract cluster points, or the gridded product after interpolation\n4. Validation toolset\n    - validation to local observation timeseries\n    - plotting\n5. Gap filling algorithm\n    - random forest temporal gap filling (TBD)\n\nValidation (4) and Gap filling (4) are future implementation.\n\n## Installation\n\nWe have now added an environments.yml file to handle versions of depencencies that are tested with the current codebase, to use this run:\n\n`conda env create -f environment.yml`\n\nAlternatively you can follow this method for dependencies (to be deprecated):\n\n```bash\nconda create -n downscaling python=3.9 ipython\nconda activate downscaling\n\n# Recomended way to install dependencies:\nconda install -c conda-forge xarray matplotlib scikit-learn pandas numpy netcdf4 h5netcdf rasterio pyproj dask rioxarray\n```\n\nThen install the code:\n\n```\n# OPTION 1 (Pypi release):\npip install TopoPyScale\n\n# OPTION 2 (development):\ncd github  # navigate to where you want to clone TopoPyScale\ngit clone git@github.com:ArcticSnow/TopoPyScale.git\npip install -e TopoPyScale    #install a development version\n\n#----------------------------------------------------------\n#            OPTIONAL: if using jupyter lab\n# add this new Python kernel to your jupyter lab PATH\npython -m ipykernel install --user --name downscaling\n\n# Tool for generating documentation from code docstring\npip install lazydocs\n```\n\nThen you need to setup your `cdsapi` with the Copernicus API key system. Follow [this tutorial](https://cds.climate.copernicus.eu/api-how-to#install-the-cds-api-key) after creating an account with [Copernicus](https://cds.climate.copernicus.eu/). On Linux, create a file `nano ~/.cdsapirc` with inside:\n\n```\nurl: https://cds.climate.copernicus.eu/api/v2\nkey: {uid}:{api-key}\n```\n\n## Basic usage\n\n1. Setup your Python environment\n2. Create your project directory\n3. Configure the file `config.ini` to fit your problem (see [`config.yml`](https://github.com/ArcticSnow/TopoPyScale_examples/blob/main/ex1_norway_finse/config_spatial.yml) for an example)\n4. Run TopoPyScale\n\n```python\nimport pandas as pd\nfrom TopoPyScale import topoclass as tc\nfrom matplotlib import pyplot as plt\n\n# ========= STEP 1 ==========\n# Load Configuration\nconfig_file = './config.yml'\nmp = tc.Topoclass(config_file)\n# Compute parameters of the DEM (slope, aspect, sky view factor)\nmp.compute_dem_param()\n\n# ========== STEP 2 ===========\n# Extract DEM parameters for points of interest (centroids or physical points)\n\nmp.extract_topo_param()\n\n# ----- Option 1:\n# Compute clustering of the input DEM and extract cluster centroids\n#mp.extract_dem_cluster_param()\n# plot clusters\n#mp.toposub.plot_clusters_map()\n# plot sky view factor\n#mp.toposub.plot_clusters_map(var='svf', cmap=plt.cm.viridis)\n\n# ------ Option 2:\n# inidicate in the config file the .csv file containing a list of point coordinates (!!! must same coordinate system as DEM !!!)\n#mp.extract_pts_param(method='linear',index_col=0)\n\n# ========= STEP 3 ==========\n# compute solar geometry and horizon angles\nmp.compute_solar_geometry()\nmp.compute_horizon()\n\n# ========= STEP 4 ==========\n# Perform the downscaling\nmp.downscale_climate()\n\n# ========= STEP 5 ==========\n# explore the downscaled dataset. For instance the temperature difference between each point and the first one\n(mp.downscaled_pts.t-mp.downscaled_pts.t.isel(point_id=0)).plot()\nplt.show()\n\n# ========= STEP 6 ==========\n# Export output to desired format\nmp.to_netcdf()\n```\n\nTopoClass will create a file structure in the project folder (see below). TopoPyScale assumes you have a DEM in GeoTiFF, and a set of climate data in netcdf (following ERA5 variable conventions). \nTopoPyScale can easier segment the DEM using clustering (e.g. K-mean), or a list of predefined point coordinates in `pts_list.csv` can be provided. Make sure all parameters in `config.ini` are correct.\n```\nmy_project/\n    \u251c\u2500\u2500 inputs/\n        \u251c\u2500\u2500 dem/ \n            \u251c\u2500\u2500 my_dem.tif\n            \u2514\u2500\u2500 pts_list.csv  (optional)\n        \u2514\u2500\u2500 climate/\n            \u251c\u2500\u2500 PLEV*.nc\n            \u2514\u2500\u2500 SURF*.nc\n    \u251c\u2500\u2500 outputs/\n    \u2514\u2500\u2500 config.ini\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "TopoPyScale: A Python Package for Hillslope Climate Downscaling",
    "version": "0.2.5",
    "project_urls": {
        "Documentation": "https://topopyscale.readthedocs.io/en/latest/",
        "Download": "https://github.com/ArcticSnow/TopoPyScale/releases/latest",
        "Examples": "https://github.com/ArcticSnow/TopoPyScale_examples",
        "Homepage": "https://github.com/ArcticSnow/TopoPyScale",
        "Source": "https://github.com/ArcticSnow/TopoPyScale"
    },
    "split_keywords": [
        "climate",
        "downscaling",
        "meteorology",
        "xarray"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "23d79a83104874c07f5f329253f6fe55eceb78fa23578bd36601afc4f0483438",
                "md5": "80e0fbe06941eb8f3072777d9e7c6e44",
                "sha256": "19135ddeb5858a57b4c14d2ef668fedd12c857e52c6da13578afad75300120fc"
            },
            "downloads": -1,
            "filename": "topopyscale-0.2.5.tar.gz",
            "has_sig": false,
            "md5_digest": "80e0fbe06941eb8f3072777d9e7c6e44",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 3141234,
            "upload_time": "2024-02-26T13:36:31",
            "upload_time_iso_8601": "2024-02-26T13:36:31.715622Z",
            "url": "https://files.pythonhosted.org/packages/23/d7/9a83104874c07f5f329253f6fe55eceb78fa23578bd36601afc4f0483438/topopyscale-0.2.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-26 13:36:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ArcticSnow",
    "github_project": "TopoPyScale",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "topopyscale"
}
        
Elapsed time: 0.23382s