topsis-102003553


Nametopsis-102003553 JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/Sarvagy-Jain/topsis_python_package
SummaryA Python package to find TOPSIS for multi-criteria decision analysis method
upload_time2023-01-22 12:06:13
maintainer
docs_urlNone
authorSarvagy Jain
requires_python
licenseMIT
keywords ucs538 tiet
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Project description
TOPSIS-ANALYSIS
By: Sarvagy Jain

What is TOPSIS?
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method. TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal solution.

### Installation
```bash
pip install Topsis-SARVAGY-102003553    
```


### Usage

Arguments Required:
(Assumne we have 3 attributes in dataset.)

You have to required one .csv file. (102003553-data.csv)
Pass weights to each attribute. (e.g.: [1,1,1])
Pass impacts to each attribute. (e.g.: [+,-,+])
Pass the name of the file with you want to put on .csv file. (102003553-result.csv)


Enter csv filename followed by .csv extentsion, then enter the weights string with values separated by commas, followed by the impacts string with comma separated signs (+,-) and name of file followed by -.csv- extension in which the user wants the output file

## Example
#### sample.csv
```bash
Fund Name	P1	P2	P3	P4	P5	Topsis Score	Rank
M1	0.72	0.52	4.4	66.6	18.06	0.607089574	2
M2	0.71	0.5	4.9	48.4	13.63	0.424434575	6
M3	0.82	0.67	6.1	58.2	16.45	0.811786381	1
M4	0.67	0.45	4.3	48.9	13.58	0.346716421	8
M5	0.75	0.56	3.3	60.2	16.2	0.486990207	4
M6	0.76	0.58	6.4	33.3	10.26	0.446021381	5
M7	0.85	0.72	3.2	61.9	16.67	0.568789224	3
M8	0.73	0.53	5.8	36.5	10.89	0.397353478	7
```

### INPUT
```python
topsis 102003553-data.csv 1,1,1,1,1 +,+,-,+,+ 102003553-result.csv
```

### OUTPUT

```bash
Fund Name	P1	P2	P3	P4	P5	Topsis Score	Rank
M1	0.72	0.52	4.4	66.6	18.06	0.607089574	2
M2	0.71	0.5 	4.9	48.4	13.63	0.424434575	6
M3	0.82	0.67	6.1	58.2	16.45	0.811786381	1
M4	0.67	0.45	4.3	48.9	13.58	0.346716421	8
M5	0.75	0.56	3.3	60.2	16.2	0.486990207	4
M6	0.76	0.58	6.4	33.3	10.26	0.446021381	5
M7	0.85	0.72	3.2	61.9	16.67	0.568789224	3
M8	0.73	0.53	5.8	36.5	10.89	0.397353478	7
```








Change Log
==========

0.0.1 (12/11/2020)
------------------
- First Release

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Sarvagy-Jain/topsis_python_package",
    "name": "topsis-102003553",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "UCS538,TIET",
    "author": "Sarvagy Jain",
    "author_email": "sarvagyjain @gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/31/6e/ac24ea003f539b996099d85fb57a8a831cd0c8fc6b3b3d9eee5911ff379d/topsis-102003553-1.0.1.tar.gz",
    "platform": null,
    "description": "Project description\r\nTOPSIS-ANALYSIS\r\nBy: Sarvagy Jain\r\n\r\nWhat is TOPSIS?\r\nTechnique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method. TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal solution.\r\n\r\n### Installation\r\n```bash\r\npip install Topsis-SARVAGY-102003553    \r\n```\r\n\r\n\r\n### Usage\r\n\r\nArguments Required:\r\n(Assumne we have 3 attributes in dataset.)\r\n\r\nYou have to required one .csv file. (102003553-data.csv)\r\nPass weights to each attribute. (e.g.: [1,1,1])\r\nPass impacts to each attribute. (e.g.: [+,-,+])\r\nPass the name of the file with you want to put on .csv file. (102003553-result.csv)\r\n\r\n\r\nEnter csv filename followed by .csv extentsion, then enter the weights string with values separated by commas, followed by the impacts string with comma separated signs (+,-) and name of file followed by -.csv- extension in which the user wants the output file\r\n\r\n## Example\r\n#### sample.csv\r\n```bash\r\nFund Name\tP1\tP2\tP3\tP4\tP5\tTopsis Score\tRank\r\nM1\t0.72\t0.52\t4.4\t66.6\t18.06\t0.607089574\t2\r\nM2\t0.71\t0.5\t4.9\t48.4\t13.63\t0.424434575\t6\r\nM3\t0.82\t0.67\t6.1\t58.2\t16.45\t0.811786381\t1\r\nM4\t0.67\t0.45\t4.3\t48.9\t13.58\t0.346716421\t8\r\nM5\t0.75\t0.56\t3.3\t60.2\t16.2\t0.486990207\t4\r\nM6\t0.76\t0.58\t6.4\t33.3\t10.26\t0.446021381\t5\r\nM7\t0.85\t0.72\t3.2\t61.9\t16.67\t0.568789224\t3\r\nM8\t0.73\t0.53\t5.8\t36.5\t10.89\t0.397353478\t7\r\n```\r\n\r\n### INPUT\r\n```python\r\ntopsis 102003553-data.csv 1,1,1,1,1 +,+,-,+,+ 102003553-result.csv\r\n```\r\n\r\n### OUTPUT\r\n\r\n```bash\r\nFund Name\tP1\tP2\tP3\tP4\tP5\tTopsis Score\tRank\r\nM1\t0.72\t0.52\t4.4\t66.6\t18.06\t0.607089574\t2\r\nM2\t0.71\t0.5 \t4.9\t48.4\t13.63\t0.424434575\t6\r\nM3\t0.82\t0.67\t6.1\t58.2\t16.45\t0.811786381\t1\r\nM4\t0.67\t0.45\t4.3\t48.9\t13.58\t0.346716421\t8\r\nM5\t0.75\t0.56\t3.3\t60.2\t16.2\t0.486990207\t4\r\nM6\t0.76\t0.58\t6.4\t33.3\t10.26\t0.446021381\t5\r\nM7\t0.85\t0.72\t3.2\t61.9\t16.67\t0.568789224\t3\r\nM8\t0.73\t0.53\t5.8\t36.5\t10.89\t0.397353478\t7\r\n```\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\nChange Log\r\n==========\r\n\r\n0.0.1 (12/11/2020)\r\n------------------\r\n- First Release\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package to find TOPSIS for multi-criteria decision analysis method",
    "version": "1.0.1",
    "split_keywords": [
        "ucs538",
        "tiet"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ba1dcae83d39a008a8931a59cb64d031576c3f07f1c1003de9d0edace65c73c8",
                "md5": "29e43b290dd2f231fa961eb32e485f69",
                "sha256": "3c0573a08aea32a5c936eab9498f9bbfc2c7a2163c14275da90381d0810bf811"
            },
            "downloads": -1,
            "filename": "topsis_102003553-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "29e43b290dd2f231fa961eb32e485f69",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4563,
            "upload_time": "2023-01-22T12:06:04",
            "upload_time_iso_8601": "2023-01-22T12:06:04.316756Z",
            "url": "https://files.pythonhosted.org/packages/ba/1d/cae83d39a008a8931a59cb64d031576c3f07f1c1003de9d0edace65c73c8/topsis_102003553-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "316eac24ea003f539b996099d85fb57a8a831cd0c8fc6b3b3d9eee5911ff379d",
                "md5": "5ebed7cdffc90f9d6011c890e2fcee9d",
                "sha256": "da836c1b1c1bfe844620300fe89cd77efae090cd17f9a4c8242c34cddf6ecf8d"
            },
            "downloads": -1,
            "filename": "topsis-102003553-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "5ebed7cdffc90f9d6011c890e2fcee9d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2094152,
            "upload_time": "2023-01-22T12:06:13",
            "upload_time_iso_8601": "2023-01-22T12:06:13.794219Z",
            "url": "https://files.pythonhosted.org/packages/31/6e/ac24ea003f539b996099d85fb57a8a831cd0c8fc6b3b3d9eee5911ff379d/topsis-102003553-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-22 12:06:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "Sarvagy-Jain",
    "github_project": "topsis_python_package",
    "lcname": "topsis-102003553"
}
        
Elapsed time: 0.03505s