Name | topsis-akashdeep-102103243 JSON |
Version |
1.0.0
JSON |
| download |
home_page | |
Summary | A Python package to find TOPSIS for MCDM (Multi-Criteria Decision Analysis Method) |
upload_time | 2024-01-21 21:45:22 |
maintainer | |
docs_url | None |
author | Akashdeep Kataria |
requires_python | |
license | MIT |
keywords |
topsis
mcdm
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Topsis
TOPSIS( Technique for order for preference by similarity to Ideal solution ) for MCDM (Multiple criteria decision making) in Python compiled by Akashdeep Singh Kataria, 102103243, TIET, Patiala.
## Installation
Use the package manager pip to install topsis-3283.
```pip install topsis_akashdeep_102103243```
## Usage
Enter csv filename followed by .csv extentsion, then enter the weights vector with vector values separated by commas, followed by the impacts vector with comma separated signs (+,-) and enter the output file name followed by .csv extension.
```python [InputDataFile as .csv] [Weights as a string] [Impacts as a string] [ResultFileName as .csv]```
### Example
```python sample.csv "1,1,1,1" "-,+,+,+" output.csv```
## Please Note That"
The first column and first row are removed by the library before processing, in attempt to remove indices and headers. So the csv MUST follow the format as shown in sample.csv shown in the Example section.
The input data file MUST contain three or more columns.
The second to last columns of the data file MUST contain NUMERIC values.
The number of weights, impacts and columns (second to last) MUST be SAME.
Impacts MUST either be '+' or '-'.
Impacts and Weights MUST be separated by , (comma).
## License
© 2024 Akashdeep Singh Kataria
This reopsitory is licensed under MIT License. See LICENSE for details.
Raw data
{
"_id": null,
"home_page": "",
"name": "topsis-akashdeep-102103243",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "TOPSIS,MCDM",
"author": "Akashdeep Kataria",
"author_email": "akashdeepkataria5@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/b7/71/dd354d62e1d254f270996e5575bff922ab9d4281470975b102b5ed8b18a7/topsis_akashdeep_102103243-1.0.0.tar.gz",
"platform": null,
"description": "# Topsis\r\nTOPSIS( Technique for order for preference by similarity to Ideal solution ) for MCDM (Multiple criteria decision making) in Python compiled by Akashdeep Singh Kataria, 102103243, TIET, Patiala. \r\n\r\n## Installation\r\nUse the package manager pip to install topsis-3283.\r\n```pip install topsis_akashdeep_102103243```\r\n\r\n## Usage\r\nEnter csv filename followed by .csv extentsion, then enter the weights vector with vector values separated by commas, followed by the impacts vector with comma separated signs (+,-) and enter the output file name followed by .csv extension.\r\n\r\n```python [InputDataFile as .csv] [Weights as a string] [Impacts as a string] [ResultFileName as .csv]```\r\n\r\n### Example\r\n```python sample.csv \"1,1,1,1\" \"-,+,+,+\" output.csv```\r\n\r\n## Please Note That\"\r\n\r\nThe first column and first row are removed by the library before processing, in attempt to remove indices and headers. So the csv MUST follow the format as shown in sample.csv shown in the Example section.\r\nThe input data file MUST contain three or more columns.\r\nThe second to last columns of the data file MUST contain NUMERIC values.\r\nThe number of weights, impacts and columns (second to last) MUST be SAME.\r\nImpacts MUST either be '+' or '-'.\r\nImpacts and Weights MUST be separated by , (comma).\r\n\r\n## License\r\n\r\n\u00c2\u00a9 2024 Akashdeep Singh Kataria\r\n\r\nThis reopsitory is licensed under MIT License. See LICENSE for details.\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python package to find TOPSIS for MCDM (Multi-Criteria Decision Analysis Method)",
"version": "1.0.0",
"project_urls": null,
"split_keywords": [
"topsis",
"mcdm"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7a9f19bb251d35f357c58874d24a7963daaae792c2855fb23b1cc84f5b2e6b10",
"md5": "573f936e75dca79abd31f6d8652757f7",
"sha256": "f3e2d259528d344ff91f6580c224ca1b4b3724dec308521ec81d3af8a85a430d"
},
"downloads": -1,
"filename": "topsis_akashdeep_102103243-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "573f936e75dca79abd31f6d8652757f7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 5356,
"upload_time": "2024-01-21T21:45:20",
"upload_time_iso_8601": "2024-01-21T21:45:20.071060Z",
"url": "https://files.pythonhosted.org/packages/7a/9f/19bb251d35f357c58874d24a7963daaae792c2855fb23b1cc84f5b2e6b10/topsis_akashdeep_102103243-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b771dd354d62e1d254f270996e5575bff922ab9d4281470975b102b5ed8b18a7",
"md5": "ea10d2fb2ce98b1c8fe7a8c922344f5e",
"sha256": "aee4554e434150401676cc3676e17ce7b8790869c554dfc086e61c737e5d05b3"
},
"downloads": -1,
"filename": "topsis_akashdeep_102103243-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "ea10d2fb2ce98b1c8fe7a8c922344f5e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4329,
"upload_time": "2024-01-21T21:45:22",
"upload_time_iso_8601": "2024-01-21T21:45:22.409775Z",
"url": "https://files.pythonhosted.org/packages/b7/71/dd354d62e1d254f270996e5575bff922ab9d4281470975b102b5ed8b18a7/topsis_akashdeep_102103243-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-21 21:45:22",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "topsis-akashdeep-102103243"
}