topsis-anubhav-102003551


Nametopsis-anubhav-102003551 JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/anubhav3003/Calco-O-Topsis
SummaryA Python package to find TOPSIS for multi-criteria decision analysis method
upload_time2023-01-22 16:10:52
maintainer
docs_urlNone
authorAnubhav Gupta
requires_python
licenseMIT
keywords ucs654 tiet
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Project description
CALCO-O-TOPSIS
By: Anubhav Gupta

What is TOPSIS?
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method. TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal solution.

### Installation
```bash
pip install topsis-anubhav-102003551==1.0.0
```


### Usage

Arguments Required:
(Assume we have 5  attributes in dataset.)

You have to required one .csv file. (102003551-data.csv)
Pass weights to each attribute. (e.g.: [1,1,1,1,1])
Pass impacts to each attribute. (e.g.: [+,-,+,-,+])
Pass the name of the file with you want to put on .csv file. (102003551-result-1.csv)


Enter csv filename followed by .csv extension, then enter the weights string with values separated by commas, followed by the impacts string with comma separated signs (+,-) and name of file followed by -.csv- extension in which the user wants the output file

## Example
#### sample.csv
```bash
Fund Name	P1	     P2     P3	    P4	    P5
M1	        0.84	0.71	6.7	    42.1	12.59
M2	        0.91	0.83	7	    31.7	10.11
M3	        0.79	0.62	4.8	    46.7	13.23
M4	        0.78	0.61	6.4	    42.4	12.55
M5	        0.94	0.88	3.6	    62.2	16.91
M6	        0.88	0.77	6.5	    51.5	14.91
M7	        0.66	0.44	5.3	    48.9	13.83
M8	        0.93	0.86	3.4	    37	    10.55

```

### INPUT
```python
topsis 102003551-data.csv 1,1,1,1,1 +,-,+,-,+ 102003551-result-1.csv
```

### OUTPUT

```bash
Fund Name	P1	        P2	        P3	        P4	        P5	    Topsis Score	Rank
M1	    0.351077437	0.344400588	0.421433661	0.322539084	0.335992288	0.594551725	    2
M2	    0.380333891	0.402609138	0.440303825	0.24286197	0.269807945	0.566246179	    3
M3	    0.330179971	0.300744175	0.301922623	0.357780884	0.353072118	0.485394123	    6
M4	    0.326000478	0.295893463	0.402563497	0.324837462	0.334924798	0.612775882	    1
M5	    0.39287237	0.4268627	0.226441967	0.476530428	0.451281142	0.361550918	    8
M6	    0.367795411	0.373504863	0.408853551	0.394554936	0.397906673	0.538764066	    5
M7	    0.275846558	0.21343135	0.333372896	0.374635658	0.369084459	0.560458621	    4
M8	    0.388692877	0.417161275	0.213861858	0.283466653	0.281550328	0.38966293	    7
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/anubhav3003/Calco-O-Topsis",
    "name": "topsis-anubhav-102003551",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "UCS654,TIET",
    "author": "Anubhav Gupta",
    "author_email": "agupta10_be20@thapar.edu",
    "download_url": "https://files.pythonhosted.org/packages/3c/92/7f145794a2425c8101afe67f41b81a5e947cb3d7007dcb3d1bdacfd0ffd9/topsis-anubhav-102003551-1.0.0.tar.gz",
    "platform": null,
    "description": "Project description\r\nCALCO-O-TOPSIS\r\nBy: Anubhav Gupta\r\n\r\nWhat is TOPSIS?\r\nTechnique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method. TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal solution.\r\n\r\n### Installation\r\n```bash\r\npip install topsis-anubhav-102003551==1.0.0\r\n```\r\n\r\n\r\n### Usage\r\n\r\nArguments Required:\r\n(Assume we have 5  attributes in dataset.)\r\n\r\nYou have to required one .csv file. (102003551-data.csv)\r\nPass weights to each attribute. (e.g.: [1,1,1,1,1])\r\nPass impacts to each attribute. (e.g.: [+,-,+,-,+])\r\nPass the name of the file with you want to put on .csv file. (102003551-result-1.csv)\r\n\r\n\r\nEnter csv filename followed by .csv extension, then enter the weights string with values separated by commas, followed by the impacts string with comma separated signs (+,-) and name of file followed by -.csv- extension in which the user wants the output file\r\n\r\n## Example\r\n#### sample.csv\r\n```bash\r\nFund Name\tP1\t     P2     P3\t    P4\t    P5\r\nM1\t        0.84\t0.71\t6.7\t    42.1\t12.59\r\nM2\t        0.91\t0.83\t7\t    31.7\t10.11\r\nM3\t        0.79\t0.62\t4.8\t    46.7\t13.23\r\nM4\t        0.78\t0.61\t6.4\t    42.4\t12.55\r\nM5\t        0.94\t0.88\t3.6\t    62.2\t16.91\r\nM6\t        0.88\t0.77\t6.5\t    51.5\t14.91\r\nM7\t        0.66\t0.44\t5.3\t    48.9\t13.83\r\nM8\t        0.93\t0.86\t3.4\t    37\t    10.55\r\n\r\n```\r\n\r\n### INPUT\r\n```python\r\ntopsis 102003551-data.csv 1,1,1,1,1 +,-,+,-,+ 102003551-result-1.csv\r\n```\r\n\r\n### OUTPUT\r\n\r\n```bash\r\nFund Name\tP1\t        P2\t        P3\t        P4\t        P5\t    Topsis Score\tRank\r\nM1\t    0.351077437\t0.344400588\t0.421433661\t0.322539084\t0.335992288\t0.594551725\t    2\r\nM2\t    0.380333891\t0.402609138\t0.440303825\t0.24286197\t0.269807945\t0.566246179\t    3\r\nM3\t    0.330179971\t0.300744175\t0.301922623\t0.357780884\t0.353072118\t0.485394123\t    6\r\nM4\t    0.326000478\t0.295893463\t0.402563497\t0.324837462\t0.334924798\t0.612775882\t    1\r\nM5\t    0.39287237\t0.4268627\t0.226441967\t0.476530428\t0.451281142\t0.361550918\t    8\r\nM6\t    0.367795411\t0.373504863\t0.408853551\t0.394554936\t0.397906673\t0.538764066\t    5\r\nM7\t    0.275846558\t0.21343135\t0.333372896\t0.374635658\t0.369084459\t0.560458621\t    4\r\nM8\t    0.388692877\t0.417161275\t0.213861858\t0.283466653\t0.281550328\t0.38966293\t    7\r\n```\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package to find TOPSIS for multi-criteria decision analysis method",
    "version": "1.0.0",
    "split_keywords": [
        "ucs654",
        "tiet"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "83101aec6474bd9f74fc82250a59a516f3cd8c6f46c448ccf252fbd18c20d710",
                "md5": "83175140ae1b40b0ade9f4dd76ab18d6",
                "sha256": "a7bb291d64f33bbad30bfc0c286563bcf16c764272ff96ef0cd1c9f9388c746a"
            },
            "downloads": -1,
            "filename": "topsis_anubhav_102003551-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "83175140ae1b40b0ade9f4dd76ab18d6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4797,
            "upload_time": "2023-01-22T16:09:10",
            "upload_time_iso_8601": "2023-01-22T16:09:10.167214Z",
            "url": "https://files.pythonhosted.org/packages/83/10/1aec6474bd9f74fc82250a59a516f3cd8c6f46c448ccf252fbd18c20d710/topsis_anubhav_102003551-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3c927f145794a2425c8101afe67f41b81a5e947cb3d7007dcb3d1bdacfd0ffd9",
                "md5": "2c198ee9b6a3eae1e09500f12c7bfb13",
                "sha256": "3820e2d12af45f8e64ab7475708012a059cb1a72e18e61dd1fb2230a324f2be3"
            },
            "downloads": -1,
            "filename": "topsis-anubhav-102003551-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2c198ee9b6a3eae1e09500f12c7bfb13",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2094830,
            "upload_time": "2023-01-22T16:10:52",
            "upload_time_iso_8601": "2023-01-22T16:10:52.796437Z",
            "url": "https://files.pythonhosted.org/packages/3c/92/7f145794a2425c8101afe67f41b81a5e947cb3d7007dcb3d1bdacfd0ffd9/topsis-anubhav-102003551-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-22 16:10:52",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "anubhav3003",
    "github_project": "Calco-O-Topsis",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "topsis-anubhav-102003551"
}
        
Elapsed time: 0.03651s