topsis-ikjot-102116071


Nametopsis-ikjot-102116071 JSON
Version 0.0.1 PyPI version JSON
download
home_page
SummaryTOPSIS Application
upload_time2024-01-29 00:31:54
maintainer
docs_urlNone
authorIkjot Singh
requires_python
license
keywords python topsis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Topsis-Ikjot-102116071



for: **Project-1 (UCS654)**

submitted by: **Ikjot Singh**

Roll no: **102116071**

Group: **3CS11**





Topsis-Ikjot-102116071 is a Python library for dealing with Multiple Criteria Decision Making(MCDM) problems by using Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS).



## Installation



Use the package manager [pip](https://pip.pypa.io/en/stable/) to install topsis-ikjot-102116071.



```bash

pip install topsis-ikjot-102116071

```







## Usage



Enter csv filename followed by .csv extentsion, then enter the weights vector with vector values separated by commas, followed by the impacts vector with comma separated signs (+,-)

```bash

topsis sample.csv "1,1,1,1" "+,-,+,+"

```

or vectors can be entered without " "

```bash

topsis sample.csv 1,1,1,1 +,-,+,+

```



But the second representation does not provide for inadvertent spaces between vector values. So, if the input string contains spaces, make sure to enclose it between double quotes (" ").



To view usage _help_, use

```

topsis /h

```

## Example



#### sample.csv



A csv file showing data for different mobile handsets having varying features.



| Model  | Storage space(in gb) | Camera(in MP)| Price(in $)  | Looks(out of 5) |

| :----: |:--------------------:|:------------:|:------------:|:---------------:|

| M1 | 16 | 12 | 250 | 5 |

| M2 | 16 | 8  | 200 | 3 |

| M3 | 32 | 16 | 300 | 4 |

| M4 | 32 | 8  | 275 | 4 |

| M5 | 16 | 16 | 225 | 2 |



weights vector = [ 0.25 , 0.25 , 0.25 , 0.25 ]



impacts vector = [ + , + , - , + ]



### input:



```python

topsis sample.csv "0.25,0.25,0.25,0.25" "+,+,-,+"

```



### output:

```

      TOPSIS RESULTS

-----------------------------



    P-Score  Rank

1  0.534277     3

2  0.308368     5

3  0.691632     1

4  0.534737     2

5  0.401046     4

```

# topsis-ikjot-102116071


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "topsis-ikjot-102116071",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,topsis",
    "author": "Ikjot Singh",
    "author_email": "<isingh_be21@thapar.edu>",
    "download_url": "https://files.pythonhosted.org/packages/72/01/bcfb2cf1a01a66f6c9a5bc60d4c26d184385616ad7f4c290c2ca52512c23/topsis-ikjot-102116071-0.0.1.tar.gz",
    "platform": null,
    "description": "\r\n# Topsis-Ikjot-102116071\r\n\r\n\r\n\r\nfor: **Project-1 (UCS654)**\r\n\r\nsubmitted by: **Ikjot Singh**\r\n\r\nRoll no: **102116071**\r\n\r\nGroup: **3CS11**\r\n\r\n\r\n\r\n\r\n\r\nTopsis-Ikjot-102116071 is a Python library for dealing with Multiple Criteria Decision Making(MCDM) problems by using Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS).\r\n\r\n\r\n\r\n## Installation\r\n\r\n\r\n\r\nUse the package manager [pip](https://pip.pypa.io/en/stable/) to install topsis-ikjot-102116071.\r\n\r\n\r\n\r\n```bash\r\n\r\npip install topsis-ikjot-102116071\r\n\r\n```\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n## Usage\r\n\r\n\r\n\r\nEnter csv filename followed by .csv extentsion, then enter the weights vector with vector values separated by commas, followed by the impacts vector with comma separated signs (+,-)\r\n\r\n```bash\r\n\r\ntopsis sample.csv \"1,1,1,1\" \"+,-,+,+\"\r\n\r\n```\r\n\r\nor vectors can be entered without \" \"\r\n\r\n```bash\r\n\r\ntopsis sample.csv 1,1,1,1 +,-,+,+\r\n\r\n```\r\n\r\n\r\n\r\nBut the second representation does not provide for inadvertent spaces between vector values. So, if the input string contains spaces, make sure to enclose it between double quotes (\" \").\r\n\r\n\r\n\r\nTo view usage _help_, use\r\n\r\n```\r\n\r\ntopsis /h\r\n\r\n```\r\n\r\n## Example\r\n\r\n\r\n\r\n#### sample.csv\r\n\r\n\r\n\r\nA csv file showing data for different mobile handsets having varying features.\r\n\r\n\r\n\r\n| Model  | Storage space(in gb) | Camera(in MP)| Price(in $)  | Looks(out of 5) |\r\n\r\n| :----: |:--------------------:|:------------:|:------------:|:---------------:|\r\n\r\n| M1 | 16 | 12 | 250 | 5 |\r\n\r\n| M2 | 16 | 8  | 200 | 3 |\r\n\r\n| M3 | 32 | 16 | 300 | 4 |\r\n\r\n| M4 | 32 | 8  | 275 | 4 |\r\n\r\n| M5 | 16 | 16 | 225 | 2 |\r\n\r\n\r\n\r\nweights vector = [ 0.25 , 0.25 , 0.25 , 0.25 ]\r\n\r\n\r\n\r\nimpacts vector = [ + , + , - , + ]\r\n\r\n\r\n\r\n### input:\r\n\r\n\r\n\r\n```python\r\n\r\ntopsis sample.csv \"0.25,0.25,0.25,0.25\" \"+,+,-,+\"\r\n\r\n```\r\n\r\n\r\n\r\n### output:\r\n\r\n```\r\n\r\n      TOPSIS RESULTS\r\n\r\n-----------------------------\r\n\r\n\r\n\r\n    P-Score  Rank\r\n\r\n1  0.534277     3\r\n\r\n2  0.308368     5\r\n\r\n3  0.691632     1\r\n\r\n4  0.534737     2\r\n\r\n5  0.401046     4\r\n\r\n```\r\n\r\n# topsis-ikjot-102116071\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "TOPSIS Application",
    "version": "0.0.1",
    "project_urls": null,
    "split_keywords": [
        "python",
        "topsis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0f832ceec7d574a0f2479c7aaad8aed08c9903d6ac679cfc8db1137f674dfa62",
                "md5": "78b6b66c445290a47bd20dc8c3b56c2a",
                "sha256": "e27e693f2bd42d8be26b003e75fffba853f9a7990e6d1d536c17e85aea73f805"
            },
            "downloads": -1,
            "filename": "topsis_ikjot_102116071-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "78b6b66c445290a47bd20dc8c3b56c2a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3440,
            "upload_time": "2024-01-29T00:31:52",
            "upload_time_iso_8601": "2024-01-29T00:31:52.453165Z",
            "url": "https://files.pythonhosted.org/packages/0f/83/2ceec7d574a0f2479c7aaad8aed08c9903d6ac679cfc8db1137f674dfa62/topsis_ikjot_102116071-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7201bcfb2cf1a01a66f6c9a5bc60d4c26d184385616ad7f4c290c2ca52512c23",
                "md5": "bf3408eb9f6b01bfe21990a8c7829e14",
                "sha256": "9ebbbd77ad1578f1a51e6df9705219350b1b5bbbfd91892115261cc9b2ea3429"
            },
            "downloads": -1,
            "filename": "topsis-ikjot-102116071-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "bf3408eb9f6b01bfe21990a8c7829e14",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3505,
            "upload_time": "2024-01-29T00:31:54",
            "upload_time_iso_8601": "2024-01-29T00:31:54.707022Z",
            "url": "https://files.pythonhosted.org/packages/72/01/bcfb2cf1a01a66f6c9a5bc60d4c26d184385616ad7f4c290c2ca52512c23/topsis-ikjot-102116071-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-29 00:31:54",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-ikjot-102116071"
}
        
Elapsed time: 4.56713s