# TOPSIS Analysis Tool
This project implements the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for multi-criteria decision making. The tool takes a decision matrix, applies weights and impacts for each criterion, and ranks the alternatives based on their relative performance. This python package was built under acronym topsis-varun-102217105 as University Student Project.
## Features
- Supports decision matrix input via CSV or Excel files (.xlsx, .xls).
- Allows customizable weights and impacts for each criterion.
- Outputs ranked results in a CSV file.
---
## Installation
1. Clone this repository or download the script file.
2. Ensure you have Python installed (version 3.6 or later).
3. Install the required dependencies using pip:
```bash
pip install numpy pandas openpyxl
```
---
## Usage
The script accepts command-line arguments to specify the input file, weights, impacts, and output file.
### Command
```bash
python topsis.py <input_file> <weights> <impacts> <output_file>
```
### Parameters
- **`<input_file>`**: Path to the input decision matrix file. Accepts `.csv`, `.xlsx`, or `.xls` files.
- **`<weights>`**: Comma-separated weights for each criterion (e.g., `0.3,0.4,0.3`).
- **`<impacts>`**: Comma-separated impacts for each criterion (`+` for beneficial, `-` for non-beneficial, e.g., `+,+,-`).
- **`<output_file>`**: Path to save the output CSV file containing ranks.
### Example
#### Input File (`data.csv`):
| Alternatives | Criterion 1 | Criterion 2 | Criterion 3 |
|--------------|-------------|-------------|-------------|
| A1 | 250 | 16 | 12 |
| A2 | 200 | 20 | 10 |
| A3 | 300 | 18 | 15 |
#### Command:
```bash
python topsis.py data.csv "0.3,0.4,0.3" "+,+,-" output.csv
```
#### Output File (`output.csv`):
| Alternatives | Criterion 1 | Criterion 2 | Criterion 3 | Rank |
|--------------|-------------|-------------|-------------|------|
| A1 | 250 | 16 | 12 | 2 |
| A2 | 200 | 20 | 10 | 3 |
| A3 | 300 | 18 | 15 | 1 |
---
## Functions
### `topsis(data, weights, impacts)`
Performs TOPSIS analysis and returns the ranks of the alternatives.
#### Parameters:
- **`data`**: 2D list or numpy array representing the decision matrix.
- **`weights`**: List of weights for each criterion.
- **`impacts`**: List of impacts (`+` or `-`) for each criterion.
#### Returns:
- List of ranks for the alternatives.
---
### `excel_to_csv(excel_file, csv_output)`
Converts an Excel file to a CSV file.
#### Parameters:
- **`excel_file`**: Path to the Excel file.
- **`csv_output`**: Path to save the converted CSV file.
#### Returns:
- The path to the converted CSV file.
---
## Notes
- Ensure that the weights and impacts match the number of criteria in the decision matrix.
- The decision matrix should not include the alternative names in the criteria columns (e.g., the first column in the input file should contain names like A1, A2, etc.).
---
## License
This project is licensed under the MIT License.
Raw data
{
"_id": null,
"home_page": null,
"name": "topsis-varun-102217105",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "python, topsis, multi-criteria decision-making, mcdm, ranking",
"author": "Varun Kumar",
"author_email": "varunkumar2004.vk@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/7a/2a/ceb4de4f4599332eb93469afc71be383546555a85222e1b60ee01e16922d/topsis_varun_102217105-0.1.2.tar.gz",
"platform": null,
"description": "# TOPSIS Analysis Tool\r\n\r\nThis project implements the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for multi-criteria decision making. The tool takes a decision matrix, applies weights and impacts for each criterion, and ranks the alternatives based on their relative performance. This python package was built under acronym topsis-varun-102217105 as University Student Project.\r\n\r\n## Features\r\n- Supports decision matrix input via CSV or Excel files (.xlsx, .xls).\r\n- Allows customizable weights and impacts for each criterion.\r\n- Outputs ranked results in a CSV file.\r\n\r\n---\r\n\r\n## Installation\r\n1. Clone this repository or download the script file.\r\n2. Ensure you have Python installed (version 3.6 or later).\r\n3. Install the required dependencies using pip:\r\n\r\n```bash\r\npip install numpy pandas openpyxl\r\n```\r\n\r\n---\r\n\r\n## Usage\r\n\r\nThe script accepts command-line arguments to specify the input file, weights, impacts, and output file.\r\n\r\n### Command\r\n```bash\r\npython topsis.py <input_file> <weights> <impacts> <output_file>\r\n```\r\n\r\n### Parameters\r\n- **`<input_file>`**: Path to the input decision matrix file. Accepts `.csv`, `.xlsx`, or `.xls` files.\r\n- **`<weights>`**: Comma-separated weights for each criterion (e.g., `0.3,0.4,0.3`).\r\n- **`<impacts>`**: Comma-separated impacts for each criterion (`+` for beneficial, `-` for non-beneficial, e.g., `+,+,-`).\r\n- **`<output_file>`**: Path to save the output CSV file containing ranks.\r\n\r\n### Example\r\n#### Input File (`data.csv`):\r\n| Alternatives | Criterion 1 | Criterion 2 | Criterion 3 |\r\n|--------------|-------------|-------------|-------------|\r\n| A1 | 250 | 16 | 12 |\r\n| A2 | 200 | 20 | 10 |\r\n| A3 | 300 | 18 | 15 |\r\n\r\n#### Command:\r\n```bash\r\npython topsis.py data.csv \"0.3,0.4,0.3\" \"+,+,-\" output.csv\r\n```\r\n\r\n#### Output File (`output.csv`):\r\n| Alternatives | Criterion 1 | Criterion 2 | Criterion 3 | Rank |\r\n|--------------|-------------|-------------|-------------|------|\r\n| A1 | 250 | 16 | 12 | 2 |\r\n| A2 | 200 | 20 | 10 | 3 |\r\n| A3 | 300 | 18 | 15 | 1 |\r\n\r\n---\r\n\r\n## Functions\r\n\r\n### `topsis(data, weights, impacts)`\r\nPerforms TOPSIS analysis and returns the ranks of the alternatives.\r\n\r\n#### Parameters:\r\n- **`data`**: 2D list or numpy array representing the decision matrix.\r\n- **`weights`**: List of weights for each criterion.\r\n- **`impacts`**: List of impacts (`+` or `-`) for each criterion.\r\n\r\n#### Returns:\r\n- List of ranks for the alternatives.\r\n\r\n---\r\n\r\n### `excel_to_csv(excel_file, csv_output)`\r\nConverts an Excel file to a CSV file.\r\n\r\n#### Parameters:\r\n- **`excel_file`**: Path to the Excel file.\r\n- **`csv_output`**: Path to save the converted CSV file.\r\n\r\n#### Returns:\r\n- The path to the converted CSV file.\r\n\r\n---\r\n\r\n## Notes\r\n- Ensure that the weights and impacts match the number of criteria in the decision matrix.\r\n- The decision matrix should not include the alternative names in the criteria columns (e.g., the first column in the input file should contain names like A1, A2, etc.).\r\n\r\n---\r\n\r\n## License\r\nThis project is licensed under the MIT License.\r\n",
"bugtrack_url": null,
"license": null,
"summary": "Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) Package",
"version": "0.1.2",
"project_urls": null,
"split_keywords": [
"python",
" topsis",
" multi-criteria decision-making",
" mcdm",
" ranking"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "66c1f77da802368c593fe90856d91c74c25418dc9e65a49a0cf44892a90ce4f8",
"md5": "cc97cba42d633da94da12cb3f3d313ec",
"sha256": "403ab3324d495c48deac012658d7ae93516bb5f9c5116ab304d41c49e139bbb6"
},
"downloads": -1,
"filename": "topsis_varun_102217105-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "cc97cba42d633da94da12cb3f3d313ec",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 5080,
"upload_time": "2025-01-17T13:41:42",
"upload_time_iso_8601": "2025-01-17T13:41:42.208549Z",
"url": "https://files.pythonhosted.org/packages/66/c1/f77da802368c593fe90856d91c74c25418dc9e65a49a0cf44892a90ce4f8/topsis_varun_102217105-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7a2aceb4de4f4599332eb93469afc71be383546555a85222e1b60ee01e16922d",
"md5": "c37a703ed40d0dbea1e75e131e3cc598",
"sha256": "a9a88ff762a737f4c3ad811bd89bba27a1074bc27b514a38e2c1bd07ba7f9d8a"
},
"downloads": -1,
"filename": "topsis_varun_102217105-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "c37a703ed40d0dbea1e75e131e3cc598",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 4534,
"upload_time": "2025-01-17T13:41:43",
"upload_time_iso_8601": "2025-01-17T13:41:43.685061Z",
"url": "https://files.pythonhosted.org/packages/7a/2a/ceb4de4f4599332eb93469afc71be383546555a85222e1b60ee01e16922d/topsis_varun_102217105-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-17 13:41:43",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "topsis-varun-102217105"
}