![image](https://github.com/changzy00/pytorch-attention/blob/master/images/logo.jpg)
# This codebase is a PyTorch implementation of various attention mechanisms, CNNs, Vision Transformers and MLP-Like models.
![](https://img.shields.io/badge/python->=v3.0-yellowgreen)
![](https://img.shields.io/badge/pytorch->=v1.5-yellowgreen)
If it is helpful for your work, pleaseā
# Updating...
## Attention mechanisms
* Squeeze-and-Excitation Networks (CVPR 2018) [pdf](https://arxiv.org/pdf/1709.01507)
* CBAM: convolutional block attention module (ECCV 2018) [pdf](https://openaccess.thecvf.com/content_ECCV_2018/papers/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.pdf)
* Bam: Bottleneck attention module(BMVC 2018) [pdf](http://bmvc2018.org/contents/papers/0092.pdf)
* A2-nets: Double attention networks (NeurIPS 2018) [pdf](https://arxiv.org/pdf/1810.11579)
* Srm : A style-based recalibration module for convolutional neural networks (ICCV 2019) [pdf](https://arxiv.org/pdf/1903.10829)
* Gcnet: Non-local networks meet squeeze-excitation networks and beyond (ICCVW 2019) [pdf](https://arxiv.org/pdf/1904.11492)
* Selective Kernel Networks (CVPR 2019) [pdf](https://arxiv.org/abs/1903.06586)
* Linear Context Transform Block (AAAI 2020) [pdf](https://arxiv.org/pdf/1909.03834v2)
* Gated Channel Transformation for Visual Recognition (CVPR 2020) [pdf](http://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_Gated_Channel_Transformation_for_Visual_Recognition_CVPR_2020_paper.pdf)
* Ecanet: Efficient channel attention for deep convolutional neural networks (CVPR 2020) [pdf](https://arxiv.org/pdf/1910.03151)
* Rotate to Attend: Convolutional Triplet Attention Module (WACV 2021) [pdf](http://arxiv.org/pdf/2010.03045)
* Gaussian Context Transformer (CVPR 2021) [pdf](http://openaccess.thecvf.com//content/CVPR2021/papers/Ruan_Gaussian_Context_Transformer_CVPR_2021_paper.pdf)
* Coordinate Attention for Efficient Mobile Network Design (CVPR 2021) [pdf](https://arxiv.org/abs/2103.02907)
* SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks (ICML 2021) [pdf](http://proceedings.mlr.press/v139/yang21o/yang21o.pdf)
## Vision Transformers
* An image is worth 16x16 words: Transformers for image recognition at scale (ICLR 2021) [pdf](https://arxiv.org/pdf/2010.11929)
* XCiT: Cross-Covariance Image Transformer (NeurIPS 2021) [pdf](https://arxiv.org/pdf/2106.09681)
* Rethinking Spatial Dimensions of Vision Transformers (ICCV 2021) [pdf](https://arxiv.org/abs/2103.16302)
* CvT: Introducing Convolutions to Vision Transformers (ICCV 2021) [pdf](https://arxiv.org/abs/2103.15808)
* CMT: Convolutional Neural Networks Meet Vision Transformers (CVPR 2022) [pdf](http://arxiv.org/pdf/2107.06263)
* MetaFormer is Actually What You Need for Vision (CVPR 2022) [pdf](https://arxiv.org/abs/2111.11418)
* MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer (ICLR 2022) [pdf](https://arxiv.org/abs/2110.02178)
* DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition (TMM 2023) [pdf](https://arxiv.org/abs/2302.01791)
* BViT: Broad Attention based Vision Transformer (TNNLS 2023) [pdf](https://arxiv.org/abs/2202.06268)
## Convolutional Neural Networks(CNNs)
* Network In Network (ICLR 2014) [pdf](https://arxiv.org/pdf/1312.4400v3)
* Deep Residual Learning for Image Recognition (CVPR 2016) [pdf](https://arxiv.org/abs/1512.03385)
* Wide Residual Networks (BMVC 2016) [pdf](https://arxiv.org/pdf/1605.07146)
* Densely Connected Convolutional Networks (CVPR 2017) [pdf](http://arxiv.org/abs/1608.06993v5)
* Deep Pyramidal Residual Networks (CVPR 2017) [pdf](https://arxiv.org/pdf/1610.02915)
* MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (CVPR 2017) [pdf](https://arxiv.org/pdf/1704.04861.pdf)
* MobileNetV2: Inverted Residuals and Linear Bottlenecks (CVPR 2018) [pdf](https://arxiv.org/abs/1801.04381)
* Searching for MobileNetV3 (ICCV 2019) [pdf](https://arxiv.org/pdf/1905.02244)
* Res2Net: A New Multi-scale Backbone Architecture (TPAMI 2019) [pdf](https://arxiv.org/pdf/1904.01169)
* GhostNet: More Features from Cheap Operations (CVPR 2020) [pdf](https://arxiv.org/abs/1911.11907)
* A ConvNet for the 2020s (CVPR 2022) [pdf](https://arxiv.org/abs/2201.03545)
## MLP-Like Models
* MLP-Mixer: An all-MLP Architecture for Vision (NeurIPS 2021) [pdf](https://arxiv.org/pdf/2105.01601.pdf)
* Pay Attention to MLPs (NeurIPS 2021) [pdf]( https://arxiv.org/pdf/2105.08050)
* Global Filter Networks for Image Classification (NeurIPS 2021) [pdf](https://arxiv.org/abs/2107.00645)
* Sparse MLP for Image Recognition: Is Self-Attention Really Necessary? (AAAI 2022) [pdf](https://arxiv.org/abs/2109.05422)
* DynaMixer: A Vision MLP Architecture with Dynamic Mixing (ICML 2022) [pdf](https://arxiv.org/pdf/2201.12083)
* Patches Are All You Need? (TMLR 2022) [pdf](https://arxiv.org/pdf/2201.09792)
* Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (TPAMI 2022) [pdf](https://arxiv.org/abs/2106.12368)
* CycleMLP: A MLP-like Architecture for Dense Prediction (ICLR 2022) [pdf](https://arxiv.org/abs/2107.10224)
Raw data
{
"_id": null,
"home_page": "https://github.com/changzy00/pytorch-attention",
"name": "torch-attention",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7.0",
"maintainer_email": "",
"keywords": "AttentionCNNsMLPsViTs",
"author": "changzy00",
"author_email": "changzy@pku.org.cn",
"download_url": "https://files.pythonhosted.org/packages/80/9d/527a370aa3ce2037a9fe4e7a3e3d3d2705318e00eaf3aaf7ee1ce0ca6e03/torch-attention-1.0.0.tar.gz",
"platform": null,
"description": "![image](https://github.com/changzy00/pytorch-attention/blob/master/images/logo.jpg)\r\n# This codebase is a PyTorch implementation of various attention mechanisms, CNNs, Vision Transformers and MLP-Like models.\r\n\r\n![](https://img.shields.io/badge/python->=v3.0-yellowgreen)\r\n\r\n![](https://img.shields.io/badge/pytorch->=v1.5-yellowgreen)\r\n\r\nIf it is helpful for your work, please\u2b50\r\n\r\n# Updating...\r\n\r\n## Attention mechanisms\r\n\r\n* Squeeze-and-Excitation Networks (CVPR 2018) [pdf](https://arxiv.org/pdf/1709.01507)\r\n* CBAM: convolutional block attention module (ECCV 2018) [pdf](https://openaccess.thecvf.com/content_ECCV_2018/papers/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.pdf) \r\n* Bam: Bottleneck attention module(BMVC 2018) [pdf](http://bmvc2018.org/contents/papers/0092.pdf)\r\n* A2-nets: Double attention networks (NeurIPS 2018) [pdf](https://arxiv.org/pdf/1810.11579)\r\n* Srm : A style-based recalibration module for convolutional neural networks (ICCV 2019) [pdf](https://arxiv.org/pdf/1903.10829) \r\n* Gcnet: Non-local networks meet squeeze-excitation networks and beyond (ICCVW 2019) [pdf](https://arxiv.org/pdf/1904.11492)\r\n* Selective Kernel Networks (CVPR 2019) [pdf](https://arxiv.org/abs/1903.06586)\r\n* Linear Context Transform Block (AAAI 2020) [pdf](https://arxiv.org/pdf/1909.03834v2)\r\n* Gated Channel Transformation for Visual Recognition (CVPR 2020) [pdf](http://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_Gated_Channel_Transformation_for_Visual_Recognition_CVPR_2020_paper.pdf)\r\n* Ecanet: Efficient channel attention for deep convolutional neural networks (CVPR 2020) [pdf](https://arxiv.org/pdf/1910.03151)\r\n* Rotate to Attend: Convolutional Triplet Attention Module (WACV 2021) [pdf](http://arxiv.org/pdf/2010.03045)\r\n* Gaussian Context Transformer (CVPR 2021) [pdf](http://openaccess.thecvf.com//content/CVPR2021/papers/Ruan_Gaussian_Context_Transformer_CVPR_2021_paper.pdf)\r\n* Coordinate Attention for Efficient Mobile Network Design (CVPR 2021) [pdf](https://arxiv.org/abs/2103.02907)\r\n* SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks (ICML 2021) [pdf](http://proceedings.mlr.press/v139/yang21o/yang21o.pdf)\r\n\r\n## Vision Transformers\r\n\r\n* An image is worth 16x16 words: Transformers for image recognition at scale (ICLR 2021) [pdf](https://arxiv.org/pdf/2010.11929)\r\n* XCiT: Cross-Covariance Image Transformer (NeurIPS 2021) [pdf](https://arxiv.org/pdf/2106.09681)\r\n* Rethinking Spatial Dimensions of Vision Transformers (ICCV 2021) [pdf](https://arxiv.org/abs/2103.16302)\r\n* CvT: Introducing Convolutions to Vision Transformers (ICCV 2021) [pdf](https://arxiv.org/abs/2103.15808)\r\n* CMT: Convolutional Neural Networks Meet Vision Transformers (CVPR 2022) [pdf](http://arxiv.org/pdf/2107.06263)\r\n* MetaFormer is Actually What You Need for Vision (CVPR 2022) [pdf](https://arxiv.org/abs/2111.11418)\r\n* MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer (ICLR 2022) [pdf](https://arxiv.org/abs/2110.02178)\r\n* DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition (TMM 2023) [pdf](https://arxiv.org/abs/2302.01791)\r\n* BViT: Broad Attention based Vision Transformer (TNNLS 2023) [pdf](https://arxiv.org/abs/2202.06268)\r\n\r\n\r\n\r\n## Convolutional Neural Networks(CNNs)\r\n\r\n* Network In Network (ICLR 2014) [pdf](https://arxiv.org/pdf/1312.4400v3)\r\n* Deep Residual Learning for Image Recognition (CVPR 2016) [pdf](https://arxiv.org/abs/1512.03385)\r\n* Wide Residual Networks (BMVC 2016) [pdf](https://arxiv.org/pdf/1605.07146)\r\n* Densely Connected Convolutional Networks (CVPR 2017) [pdf](http://arxiv.org/abs/1608.06993v5)\r\n* Deep Pyramidal Residual Networks (CVPR 2017) [pdf](https://arxiv.org/pdf/1610.02915)\r\n* MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (CVPR 2017) [pdf](https://arxiv.org/pdf/1704.04861.pdf)\r\n* MobileNetV2: Inverted Residuals and Linear Bottlenecks (CVPR 2018) [pdf](https://arxiv.org/abs/1801.04381)\r\n* Searching for MobileNetV3 (ICCV 2019) [pdf](https://arxiv.org/pdf/1905.02244)\r\n* Res2Net: A New Multi-scale Backbone Architecture (TPAMI 2019) [pdf](https://arxiv.org/pdf/1904.01169)\r\n* GhostNet: More Features from Cheap Operations (CVPR 2020) [pdf](https://arxiv.org/abs/1911.11907)\r\n* A ConvNet for the 2020s (CVPR 2022) [pdf](https://arxiv.org/abs/2201.03545)\r\n\r\n## MLP-Like Models\r\n\r\n* MLP-Mixer: An all-MLP Architecture for Vision (NeurIPS 2021) [pdf](https://arxiv.org/pdf/2105.01601.pdf)\r\n* Pay Attention to MLPs (NeurIPS 2021) [pdf]( https://arxiv.org/pdf/2105.08050)\r\n* Global Filter Networks for Image Classification (NeurIPS 2021) [pdf](https://arxiv.org/abs/2107.00645)\r\n* Sparse MLP for Image Recognition: Is Self-Attention Really Necessary? (AAAI 2022) [pdf](https://arxiv.org/abs/2109.05422)\r\n* DynaMixer: A Vision MLP Architecture with Dynamic Mixing (ICML 2022) [pdf](https://arxiv.org/pdf/2201.12083)\r\n* Patches Are All You Need? (TMLR 2022) [pdf](https://arxiv.org/pdf/2201.09792)\r\n* Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (TPAMI 2022) [pdf](https://arxiv.org/abs/2106.12368)\r\n* CycleMLP: A MLP-like Architecture for Dense Prediction (ICLR 2022) [pdf](https://arxiv.org/abs/2107.10224)\r\n\r\n",
"bugtrack_url": null,
"license": "Apache",
"summary": "Pytorch implementation of popular Attention Mechanisms, Vision Transformers, MLP-Like models and CNNs.",
"version": "1.0.0",
"project_urls": {
"Homepage": "https://github.com/changzy00/pytorch-attention"
},
"split_keywords": [
"attentioncnnsmlpsvits"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "809d527a370aa3ce2037a9fe4e7a3e3d3d2705318e00eaf3aaf7ee1ce0ca6e03",
"md5": "4054f7b6e6580068df23e2f864e00651",
"sha256": "1e1b6850a73c3e80b7d7f09266554862e4816de8c075deecfaca27be86966492"
},
"downloads": -1,
"filename": "torch-attention-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "4054f7b6e6580068df23e2f864e00651",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7.0",
"size": 3354,
"upload_time": "2023-06-17T10:56:19",
"upload_time_iso_8601": "2023-06-17T10:56:19.322657Z",
"url": "https://files.pythonhosted.org/packages/80/9d/527a370aa3ce2037a9fe4e7a3e3d3d2705318e00eaf3aaf7ee1ce0ca6e03/torch-attention-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-17 10:56:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "changzy00",
"github_project": "pytorch-attention",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "torch-attention"
}