torch-geometric-temporal


Nametorch-geometric-temporal JSON
Version 0.37 PyPI version JSON
download
home_pagehttps://github.com/benedekrozemberczki/pytorch_geometric_temporal
SummaryA Temporal Extension Library for PyTorch Geometric.
upload_time2021-06-12 16:25:56
maintainer
docs_urlNone
authorBenedek Rozemberczki
requires_python>=3.6
licenseMIT
keywords machine-learning deep-learning deeplearning deep learning machine learning signal processing temporal signal graph dynamic graph embedding dynamic embedding graph convolution gcn graph neural network graph attention lstm temporal network representation learning learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/benedekrozemberczki/pytorch_geometric_temporal",
    "name": "torch-geometric-temporal",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "machine-learning,deep-learning,deeplearning,deep learning,machine learning,signal processing,temporal signal,graph,dynamic graph,embedding,dynamic embedding,graph convolution,gcn,graph neural network,graph attention,lstm,temporal network,representation learning,learning",
    "author": "Benedek Rozemberczki",
    "author_email": "benedek.rozemberczki@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/61/d5/4079e3ce3cbb46c0caf8c0180bf843b02708ed13cad4a72607b3293dd403/torch_geometric_temporal-0.37.tar.gz",
    "platform": "",
    "description": "",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Temporal Extension Library for PyTorch Geometric.",
    "version": "0.37",
    "split_keywords": [
        "machine-learning",
        "deep-learning",
        "deeplearning",
        "deep learning",
        "machine learning",
        "signal processing",
        "temporal signal",
        "graph",
        "dynamic graph",
        "embedding",
        "dynamic embedding",
        "graph convolution",
        "gcn",
        "graph neural network",
        "graph attention",
        "lstm",
        "temporal network",
        "representation learning",
        "learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "e67e593b7991fbfe2d1453c2722868de",
                "sha256": "ed5ea5c3571449ae01defd5a578a20a3fc990ca8e76cac69fb66e933106c2e84"
            },
            "downloads": -1,
            "filename": "torch_geometric_temporal-0.37.tar.gz",
            "has_sig": false,
            "md5_digest": "e67e593b7991fbfe2d1453c2722868de",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 39327,
            "upload_time": "2021-06-12T16:25:56",
            "upload_time_iso_8601": "2021-06-12T16:25:56.822635Z",
            "url": "https://files.pythonhosted.org/packages/61/d5/4079e3ce3cbb46c0caf8c0180bf843b02708ed13cad4a72607b3293dd403/torch_geometric_temporal-0.37.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2021-06-12 16:25:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": null,
    "github_project": "benedekrozemberczki",
    "error": "Could not fetch GitHub repository",
    "lcname": "torch-geometric-temporal"
}
        
Elapsed time: 0.35753s