Raw data
{
"_id": null,
"home_page": "https://github.com/benedekrozemberczki/pytorch_geometric_temporal",
"name": "torch-geometric-temporal",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "machine-learning, deep-learning, deeplearning, deep learning, machine learning, signal processing, temporal signal, graph, dynamic graph, embedding, dynamic embedding, graph convolution, gcn, graph neural network, graph attention, lstm, temporal network, representation learning, learning",
"author": "Benedek Rozemberczki",
"author_email": "benedek.rozemberczki@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/70/f7/2482eb3cbdc773b7aa055eca2cfcf5b8c8a84c514e772549bd7f1d0fc175/torch_geometric_temporal-0.56.2.tar.gz",
"platform": null,
"description": "",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Temporal Extension Library for PyTorch Geometric.",
"version": "0.56.2",
"project_urls": {
"Download": "https://github.com/benedekrozemberczki/pytorch_geometric_temporal/archive/v0.54.0.tar.gz",
"Homepage": "https://github.com/benedekrozemberczki/pytorch_geometric_temporal"
},
"split_keywords": [
"machine-learning",
" deep-learning",
" deeplearning",
" deep learning",
" machine learning",
" signal processing",
" temporal signal",
" graph",
" dynamic graph",
" embedding",
" dynamic embedding",
" graph convolution",
" gcn",
" graph neural network",
" graph attention",
" lstm",
" temporal network",
" representation learning",
" learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "6aa364faf5dc217f61a0e3fcb71da0925cc69f7cd1b057fae264f690b122d9de",
"md5": "e00953b161a047114bf317b68932c23b",
"sha256": "6cb5d0d28ba2b9fac864a0737ded6c4ee53365ce5e43849a3f5da83695c2a624"
},
"downloads": -1,
"filename": "torch_geometric_temporal-0.56.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e00953b161a047114bf317b68932c23b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 102300,
"upload_time": "2025-07-16T05:35:08",
"upload_time_iso_8601": "2025-07-16T05:35:08.302478Z",
"url": "https://files.pythonhosted.org/packages/6a/a3/64faf5dc217f61a0e3fcb71da0925cc69f7cd1b057fae264f690b122d9de/torch_geometric_temporal-0.56.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "70f72482eb3cbdc773b7aa055eca2cfcf5b8c8a84c514e772549bd7f1d0fc175",
"md5": "982356a1447d529e726e3f9481950cff",
"sha256": "e6757f3b999b51e993e1eed2c6a546c37e769c31a03672ec7ba0833bb81da0bb"
},
"downloads": -1,
"filename": "torch_geometric_temporal-0.56.2.tar.gz",
"has_sig": false,
"md5_digest": "982356a1447d529e726e3f9481950cff",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 56982,
"upload_time": "2025-07-16T05:35:09",
"upload_time_iso_8601": "2025-07-16T05:35:09.990235Z",
"url": "https://files.pythonhosted.org/packages/70/f7/2482eb3cbdc773b7aa055eca2cfcf5b8c8a84c514e772549bd7f1d0fc175/torch_geometric_temporal-0.56.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-16 05:35:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "benedekrozemberczki",
"github_project": "pytorch_geometric_temporal",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "torch-geometric-temporal"
}