Name | torch-mdct JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | A PyTorch implementation of the Modified Discrete Cosine Transform (MDCT) and its inverse for audio processing. |
upload_time | 2024-11-07 13:27:02 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
audio
imdct
mdct
pytorch
signal processing
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# torch_mdct
PyTorch implementation of Modified Discrete Cosine Transform and Inverse Modified Discrete Cosine Transform.
## Installation
```bash
pip install torch_mdct
```
## Usage
```python
import torchaudio
from torch_mdct import MDCT, IMDCT
# Load a sample waveform
waveform, sample_rate = torchaudio.load("/path/to/audio.file")
# Initialize the mdct and imdct transforms
mdct = MDCT(win_length=2048)
imdct = IMDCT(win_length=2048)
# Transform waveform into mdct spectrogram
spectrogram = mdct(waveform)
# Transform spectrogram back to audio
reconst_waveform = imdct(spectrogram)
# Compute the differences
print(f"L1: {(waveform - reconst_waveform).abs().mean()}")
```
## References
[[1]](https://github.com/zafarrafii/Zaf-Python) Zaf-Python: Zafar's Audio Functions in **Python** for audio signal analysis.
[[2]](https://github.com/nils-werner/mdct) MDCT: A fast MDCT implementation using SciPy and FFTs.
Raw data
{
"_id": null,
"home_page": null,
"name": "torch-mdct",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "audio, imdct, mdct, pytorch, signal processing",
"author": null,
"author_email": "Kinyugo Maina <kinyugomaina@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/8f/b0/eaa9a7b48f5ffc1dac51d06e14e27fb3382ea891e24f39667ca3286182d3/torch_mdct-0.1.0.tar.gz",
"platform": null,
"description": "# torch_mdct\n\nPyTorch implementation of Modified Discrete Cosine Transform and Inverse Modified Discrete Cosine Transform.\n\n## Installation \n\n```bash\npip install torch_mdct\n```\n\n## Usage\n\n```python\nimport torchaudio\nfrom torch_mdct import MDCT, IMDCT\n\n# Load a sample waveform \nwaveform, sample_rate = torchaudio.load(\"/path/to/audio.file\")\n\n# Initialize the mdct and imdct transforms\nmdct = MDCT(win_length=2048)\nimdct = IMDCT(win_length=2048)\n\n# Transform waveform into mdct spectrogram\nspectrogram = mdct(waveform)\n\n# Transform spectrogram back to audio \nreconst_waveform = imdct(spectrogram)\n\n# Compute the differences\nprint(f\"L1: {(waveform - reconst_waveform).abs().mean()}\")\n```\n\n## References \n[[1]](https://github.com/zafarrafii/Zaf-Python) Zaf-Python: Zafar's Audio Functions in **Python** for audio signal analysis.\n\n[[2]](https://github.com/nils-werner/mdct) MDCT: A fast MDCT implementation using SciPy and FFTs.",
"bugtrack_url": null,
"license": null,
"summary": "A PyTorch implementation of the Modified Discrete Cosine Transform (MDCT) and its inverse for audio processing.",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/Kinyugo/torch_mdct",
"Issues": "https://github.com/Kinyugo/torch_mdct/issues"
},
"split_keywords": [
"audio",
" imdct",
" mdct",
" pytorch",
" signal processing"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "cb4c0645cfdcae6fa39cb9ebe97c7bcc309585ac330da9f7e282e08850dfd65c",
"md5": "2d04455ad5ec3836fc75e39a78d53fa2",
"sha256": "7933f1265bc95bd595d4fc2e606a5c89ab49a2874b74359294b9764f49accca1"
},
"downloads": -1,
"filename": "torch_mdct-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2d04455ad5ec3836fc75e39a78d53fa2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 5713,
"upload_time": "2024-11-07T13:26:53",
"upload_time_iso_8601": "2024-11-07T13:26:53.021412Z",
"url": "https://files.pythonhosted.org/packages/cb/4c/0645cfdcae6fa39cb9ebe97c7bcc309585ac330da9f7e282e08850dfd65c/torch_mdct-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8fb0eaa9a7b48f5ffc1dac51d06e14e27fb3382ea891e24f39667ca3286182d3",
"md5": "c90a7fb748a2e8ce5e8f5d124b5f25d5",
"sha256": "0f3b454bfb7a8ee4954e8d5c045d5906340799c349846b8b03fcb6d2abcdacb3"
},
"downloads": -1,
"filename": "torch_mdct-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "c90a7fb748a2e8ce5e8f5d124b5f25d5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 3024466,
"upload_time": "2024-11-07T13:27:02",
"upload_time_iso_8601": "2024-11-07T13:27:02.537226Z",
"url": "https://files.pythonhosted.org/packages/8f/b0/eaa9a7b48f5ffc1dac51d06e14e27fb3382ea891e24f39667ca3286182d3/torch_mdct-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-07 13:27:02",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Kinyugo",
"github_project": "torch_mdct",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "torch-mdct"
}